
8 Bi-Abduction

Bi-Abduction

Bi-abduction and Abstraction

In the last lecture, we saw how frame inference lets us verify that the
pre- and post-conditions and loop invariants of a given program are
correct.

Abstraction lets us infer loop invariants of programs automatically.

Bi-abduction lets us infer pre- and post-conditions of programs
automatically.

With these techniques, tools are able to analyse millions of lines of
code!
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Bi-Abduction

Baby bi-abduction example
{

emp ∗ ?M
}

{
x 7→ − ∗ ?F

}

[x] := 1;{
x 7→ 1 ∗ ?F

}

[y] := 1;

{
???
}

{
emp ∗ ?M

}
{
x 7→ − ∗ ?F

}

[x] := 1;{
x 7→ 1 ∗ ?F

}

[y] := 1;

{
???
}

Axiom of the current command:
{
x 7→ −

}
[x] := 1

{
x 7→ 1

}

Bi-abduction problem:

emp ∗ ?M ` x 7→ − ∗ ?F
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Bi-Abduction

Abductive Inference

From philosophy:

“Abduction is the process of forming an explanatory hypothesis.
It is the only logical operation which introduces any new idea.”

Charles Peirce, writing about the scientific process.
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Bi-Abduction

The Abduction problem

Given formulas P and Q, the abduction problem between P and Q
consists in finding ?M such that

P ∗ ?M ` Q

M = False and M = Q are always solutions

In general, we look for solutions that are minimal with respect to an
ordering �.
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Bi-Abduction

On the Quality of Abduction Solutions

Consider the abduction problem

emp ∗ ?M ` x 7→ −

The ordering takes into account spatial minimality:

x 7→ − � x 7→ − ∗ y 7→ −

and logical minimality:

x 7→ − � False

x 7→ − � x 7→ 10 ∧ x = 12

The �-minimal solution to this abduction problem is M = x 7→ −.
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Bi-Abduction

Abduction Examples

x 7→ 1 ∗ ?M ` y 7→ − ∗ True

x 7→ 1 ∗ y 7→ − ` y 7→ − ∗ True

x 7→ 1 ∗ x .
= y ` y 7→ − ∗ True

x 7→ a, null ∗ ?M ` list(x) ∗ list(y)

x 7→ a, null ∗ list(y) ` list(x) ∗ list(y)
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Bi-Abduction

The Bi-Abduction problem

Given formulas P and Q, the bi-abduction problem between P and Q
consists in finding ?M and ?F such that

P ∗ ?M ` Q ∗ ?F

M = False or (M = Q and F = P ) are always solutions

Again, we look for solutions that are minimal with respect to an
ordering �.

One way to solve bi-abduction problems (used by tools):
1 Find M such that

P ∗ ?M ` Q ∗ True

2 Find F such that
P ∗M ` Q ∗ ?F
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Bi-Abduction

Bi-Abduction Examples

emp ∗ ?M ` x 7→ − ∗ ?F

emp ∗ x 7→ − ` x 7→ − ∗ emp

x 7→ 1 ∗ ?M ` y 7→ − ∗ ?F

x 7→ 1 ∗ y 7→ − ` y 7→ − ∗ x 7→ 1

x 7→ 1 ∗ x .
= y ` y 7→ − ∗ emp
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Bi-Abduction

Baby bi-abduction example
{

emp ∗ ?M
}

{
x 7→ − ∗ ?F

}

[x] := 1;{
x 7→ 1 ∗ ?F

}

[y] := 1;

{
???
}

{
emp ∗ ?M

}
{
x 7→ − ∗ ?F

}

[x] := 1;{
x 7→ 1 ∗ ?F

}

[y] := 1;

{
???
}

Axiom of the current command:
{
x 7→ −

}
[x] := 1

{
x 7→ 1

}

Bi-abduction problem:

emp ∗ ?M ` x 7→ − ∗ ?F
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Bi-Abduction

Bi-Abduction along a Path

In the previous example, we did not need to restart from the top every
time new pieces were added to the pre-condition.

This is thanks to the following rule, derived from sequence, frame,
and consequence, when C1 does not modify variables in M :

{
P
}
C1

{
Q
}

Q ∗M ` Q′ {
Q′} C2

{
R
}

{
P ∗M

}
C1;C2

{
R
}

Abducing pre-conditions on a path is sound for that path.

What about non straigtht-line code, i.e., conditionals and loops?
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Bi-Abduction

Abducing Unsound Pre-Conditions

{
y 7→ −

}

z := random();
if (z = 0) {

[y] := 0;

•

dispose(x);
} else {
dispose(x);
dispose(y);

•

}

{
y 7→ − ∗ x .

= y
}

z := random();
if (z = 0) {

[y] := 0;{
y 7→ 0 ∗ x .

= y
}

•

dispose(x);{
emp ∗ x .

= y
}

} else {
dispose(x);
dispose(y);

•

}

Current command axiom:
{
x 7→ −

}
dispose(x)

{
emp

}

Bi-abduction problem:
y 7→ 0 ∗ ?M ` x 7→ − ∗ ?F

y 7→ 0 ∗ x .
= y ` x 7→ − ∗ emp
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Bi-Abduction

Re-Execution

Abducing pre-conditions inside a path is unsound for other paths in
general.

Bi-abduction yields only candidate pre-conditions.

A re-execution phase (à la Smallfoot) prunes incorrect specifications.
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Bi-Abduction

Bi-Abduction and Abstraction: High-Level Overview

Inferred pre-condition:{}

X fix-point reached

•

while(x 6= null){

•

t := x;

•

x := [x+ 1];

•

dispose(t); dispose(t+ 1);

•

}
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Bi-Abduction

Abstraction in Pre-Conditions and Re-Execution

Abstraction replaces a candidate pre-condition A with A′ such that
A A′.

As a tentative rule:

A A′ {
A
}
C
{
B
}

{
A′} C

{
B
} Unsound!

Abstracted pre-conditions also need to be re-executed.
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Bi-Abduction

Summary

Recipe for bi-abductive program analysis:

Do symbolic execution

Abduce missing resources

Abstract to discover loop invariants

Repeat until the post-condition is reached

Check the candidate specifications by re-execution if needed
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Bi-Abduction

Bi-Abduction
{
x

.
= x0

}

y := null;
while(x 6= null)
{

z := [x + 1];
[x + 1] := y;
y := x;
x := z;
}
return y;

Bi-Abduction problem:
x

.
= x0 ∗ y .

= null ∗ x 6 .= null ∗ ` x 7→ a0, b0 ∗
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Bi-Abduction

Attacking Large Programs

We can show memory safety for large programs:

the program does not dereference null or dangling pointers, and
does not leak memory.

for large programs. This reasoning is possible, due to the compositional
reasoning given by bi-abduction.

Examples
OS device drivers (< 15K lines), Apache (1.7M), the Linux kernel (16M),
recently 15 bugs found in OpenSSL (450K lines).

Still, we need to scale to industrial tools . . .
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