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Abstract. To avoid data races, concurrent operations should either be
at distinct times or on distinct data. Atomicity is the abstraction that
an operation takes effect at a single, discrete instant in time, with lin-
earisability being a well-known correctness condition which asserts that
concurrent operations appear to behave atomically. Disjointness is the
abstraction that operations act on distinct data resource, with concur-
rent separation logics enabling reasoning about threads that appear to
operate independently on disjoint resources.

We present TaDA, a program logic that combines the benefits of ab-
stract atomicity and abstract disjointness. Our key contribution is the
introduction of atomic triples, which offer an expressive approach to spec-
ifying program modules. By building up examples, we show that TaDA
supports elegant modular reasoning in a way that was not previously
possible.

1 Introduction

The specification and verification of concurrent program modules is a difficult
problem. When concurrent threads work with shared data, the resulting be-
haviour can be complex. Two abstractions provide useful simplifications: that
operations effectively act at distinct times; and that operations effectively act
on disjoint resources. Programmers work with sophisticated combinations of the
time and data abstractions. In constrast, existing reasoning techniques tend to
be limited to one or the other abstraction.

Atomicity is the abstraction that an operation takes effect at a single, discrete
instant in time. The concurrent behaviour of atomic operations is equivalent to
some sequential interleaving of the operations. Linearisability [11] is a correct-
ness condition, which specifies that the operations of a concurrent module ap-
pear to behave atomically. For example, a set module might use a sophisticated
lock-free data structure to implement insert, remove and contains operations.
Linearisability allows a client to use these as if they were simple atomic oper-
ations, abstracting the implementation details. Various proof techniques have
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been introduced and used to prove linearisability for concurrent modules such
as queues [11] and lists with fine-grained synchronisation [21].

With linearisability, each operation is given a sequential specification, and
the operations are asserted to behave atomically with respect to each other. Lin-
earisability is therefore a whole-module property: if we extend the set module
with an atomic insertBoth operation, we would have to redo the linearisability
proof to check that this new operation respects the atomicity of the others, and
vice versa. Moreover, all operations are required to be atomic, so we could not
specify a non-atomic insertBoth behaving like two consecutive atomic inserts.
It is also possible to add operations to a module that break the abstraction of
atomicity for existing operations. For example, if the set module were to expose
the low-level heap operations used in its implementation, a client could use them
to observe intermediate states in the underlying data structure. Consequently,
the fiction of atomicity is fragile.

The sequential specifications used for linearisability can be inadequate for ex-
pressing concurrent behaviours. In particular, we might wish to constrain which
operations a client can perform concurrently. For instance, a module might pro-
vide alternative update operations that only appear atomic if all other concurrent
operations are reads. Constraining the client in this way reduces the burden on
the implementation, which can be more efficient. However, a sequential specifica-
tion cannot express the distinction between the alternative and regular updates.

Disjointness is the abstraction that operations act on specific resources.
When threads operate on disjoint resources, they do not interfere with each
other, and so their overall effect is the combined effects of each. Concurrent sep-
aration logics [14,5,17,16] embody this principle, by providing modular reasoning
about disjoint resource. Concurrent abstract predicates (CAP) [5], in particular,
support reasoning about abstract disjoint resource, which can be used to specify
program modules. In the case of a set module, for instance, values may be seen as
resources, which may be independently in or out of the set. If concurrent threads
use disjoint values, reasoning about them is simple. CAP also supports reasoning
about shared regions, which can be used to implement abstract disjoint resources
with shared resources. In this way, sophisticated concurrent implementations can
be verified against simple specifications. Such reasoning has been applied to, for
example, locks [5], sets [5] and concurrent indexes [2].

The CAP approach is, however, limited. With CAP, it is only possible to ac-
cess shared regions using primitive atomic operations. Yet operations provided
by concurrent modules are rarely primitive atomic. Consequently, the abstract
resources provided by a module are not easily shared and the nesting of mod-
ules is difficult. For example, the CAP specification of a set module [5] constrains
concurrent threads to operate on disjoint values. Two threads cannot remove the
same value: since remove is not primitive atomic, it cannot operate on shared
resources. It is possible to give a specification that has a finer resource gran-
ularity [2], which can support some form of shared concurrent removal. Such
specifications are complex and ad hoc, as they do not support general sharing.
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Linearisability and CAP have complementary virtues and weaknesses. Lin-
earisability gives strong, whole-module specifications based on abstract atomic-
ity; CAP gives weaker, independent specifications based on abstract disjointness.
Linearisability supports nested modules, but whole-module specifications make
it difficult to extend modules; CAP supports the extension of modules, but the
weak specifications make building up nested modules more difficult. Linearisabil-
ity does not constrain the client, thus placing significant burden on the imple-
mentation; CAP constrains the client to use specific disjoint resource, enabling
more flexibility in the implementation.

We propose a solution that combines the virtues of both approaches. Specifi-
cally, we introduce a new atomic triple judgement for specifying abstract atom-
icity in a program logic. The simplest form of atomic triple judgement is

`
〈
p
〉
C
〈
q
〉

where p and q are assertions in the style of separation logic and C is a program.
This judgement is read as “C atomically updates p to q”. The program may
actually take multiple steps, but each step before the atomic update from p to
q must preserve the assertion p. Before the atomic update occurs, the concur-
rent environment may also update the state, provided that the assertion p is
preserved. As soon as the atomic update has happened, the environment can do
what it likes; it is not constrained to preserve q. Meanwhile, the program C may
no longer have access to the resources in q.

The atomicity of C is only expressed with respect to the abstraction defined
by p. If the environment makes an observation at a lower level of abstraction,
it may perceive multiple updates rather than this single atomic update. For
example, suppose that a set module, which provides an atomic remove operation,
is implemented using a linked list. The implementation might first mark a node
as deleted, before removing it from the list. The environment can observe the
change from “marked” to “removed”. This low-level step does not change the
abstract set; the change already occurred when the node was marked.

Atomic triples are our key contribution, as they allow us to overcome limi-
tations of the linearisability and CAP approaches. Atomic triples can be used
to access shared resources concurrently, rather than relying on primitive atomic
operations to do so. This makes it easier to build modules on top of each other.
Atomic triples specify operations with respect to an abstraction, so they can be
proved independently. This makes it possible to extend modules at a later date,
and mix atomic and non-atomic operations as well as operations working at dif-
ferent levels of abstraction. Atomic triples can specify clear constraints on how
a client can use them. For instance, they can enforce that the unlock operation
on a lock should not be called by two threads at the same time (§2.1). Further-
more, atomic triples can specify the transfer of resources between a client and a
module. For instance, they can specify an operation that non-atomically stores
the result of an atomic read into a buffer provided by a client (§2.3).

Our other main contribution is TaDA, a program logic for Time and Data
Abstraction, which extends CAP with rules for deriving and using atomic triples.
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Using TaDA, we first specify an atomic lock module (§2.1). From this specifica-
tion, we then derive a resource-transferring CAP-style lock specification, which
illustrates the weakening of the atomic specification to a specific use case. We
also prove that a spin lock implementation satisfies the atomic lock specifica-
tion. We show how the logic supports vertical reasoning about modules, by ver-
ifying an implementation of multiple-compare-and-swap (MCAS) using the lock
specification (§2.2), and an implementation of a concurrent double-ended queue
(deque) using the MCAS specification (§4). We present the details of TaDA’s
proof rules in §3, and briefly describe their semantics and soundness in §5. We
thus demonstrate that TaDA combines the benefits of abstract atomicity and
abstract disjointness within a single program logic.

2 Motivating Examples

We introduce TaDA by showing how two simple concurrent interfaces can be
specified, implemented, and used: lock and multiple compare-and-swap.

2.1 Lock

We define a lock module with the operations lock(x) and unlock(x) and a
constructor makeLock().

Atomic Lock Specification. The lock operations are specified in terms of
abstract predicates [15] that represent the state of a lock: L(x) and U(x) assert
the existence of a lock, addressed by x, that is in the locked and unlocked state,
respectively. These predicates confer ownership of the lock: it is not possible to
have more than one L(x) or U(x) for the same value of x. This contrasts with
the style of specification given with CAP [5], but we shall see how the CAP
specification can be derived using the atomic specification given here.

The specification for the makeLock() operation is a simple Hoare triple:

`
{

emp
}
x := makeLock()

{
U(x)

}
The operation allocates a new lock, which is initially unlocked, and returns its
address. The specification says nothing about the granularity of the operation.
In fact, the granularity is hardly relevant, since no concurrent environment can
meaningfully observe the effects of makeLock until its return value is known —
that is, once the operation has completed.

The specification for the unlock(x) operation uses an atomic triple:

`
〈
L(x)

〉
unlock(x)

〈
U(x)

〉
Intuitively, this specification means that unlock(x) will atomically take the lock
x from the locked to unlocked state. This atomicity means that the resources in
the specification may be shared — that is, concurrently accessible by multiple
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threads. Sharing in this way is not possible with ordinary Hoare triples, since
they make no guarantee that intermediate steps preserve invariants on the re-
sources. The atomic triple, by contrast, makes a strong guarantee: as long as the
concurrent environment guarantees that the (possibly) shared resource L(x) is
available, the unlock(x) operation will preserve L(x) until it transforms it into
U(x); after the transformation, the operation no longer requires U(x), and is
consequently oblivious to subsequent transformations by the environment (such
as another thread acquiring the lock).

It is significant that the notion of atomicity is tied to the abstraction in the
specification. The predicate L(x) could abstract multiple underlying states in the
implementation. If we were to observe the underlying state, the operation might
no longer appear to be atomic.

Specifying lock(x) is more subtle. It can be called whether the lock is in the
locked or unlocked state, and always results in setting it to the locked state (if
it ever terminates). A first attempt at a specification might therefore be:

`
〈
L(x) ∨ U(x)

〉
lock(x)

〈
L(x)

〉
This specification has two significant flaws. Firstly, it allows lock(x) to do noth-
ing at all when the lock is already locked. This is contrary to what it should do,
which is wait for it to become unlocked and then (atomically) lock it. Secondly,
as the level of abstraction given by the precondition is L(x)∨U(x), an implemen-
tation could change the state of the lock arbitrarily without appearing to have
done anything. In particular, an implementation could transition between the
two states any number of times, so long as it is in the L(x) state when it finishes.

A second attempt to overcome these issues might be:

`
〈
L(x)

〉
lock(x)

〈
false

〉
`
〈
U(x)

〉
lock(x)

〈
L(x)

〉
In the left-hand triple, the lock is initially locked; the implementation may not
terminate, nor change the state of the lock. In the right-hand triple, the lock is
initially unlocked; the implementation may only make one atomic transformation
from unlocked to locked. These specifications also have a subtle flaw: they assume
that the environment will not change the state of the lock. This would prevent
us from having multiple threads competing to acquire the lock, which is the
essential purpose of a lock.

An equivalent specification makes use of a boolean logical variable:

∀l ∈ B.`
〈
(L(x) ∧ ¬l) ∨ (U(x) ∧ l)

〉
lock(x)

〈
L(x) ∧ l

〉
The variable l records the state of the lock when the atomic operation takes
effect. In particular, it cannot take effect unless the lock is already unlocked.

These specifications do not express the subtlety that the interference permit-
ted before the atomic update is different for the environment and the operation.
The environment should be allowed to change the value of l (i.e. acquire and
release the lock) but the lock operation should not. The correct specification
expresses this by binding the variable l in a new way:

`

A

l ∈ B.
〈
(L(x) ∧ ¬l) ∨ (U(x) ∧ l)

〉
lock(x)

〈
L(x) ∧ l

〉
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The special role of l (indicated by the pseudo-quantifier

A

) is in distinguishing
the constraints on the environment and on the thread before the atomic opera-
tion takes effect. Specifically, the environment is at liberty to change the value
of l for which the precondition holds (that is, lock and unlock the lock), but the
thread executing the operation must preserve the value of l (that is, it cannot
lock or unlock the lock except by performing the atomic operation).

CAP Lock Specification. The atomic specification of the lock captures its
essence as a synchronisation primitive. In practice, a lock is often used to pro-
tect some resource. We demonstrate how a CAP-style lock specification [5], which
views the lock as a mechanism for protecting a resource invariant, can be de-
rived from the atomic specification. This illustrates a typical use of a TaDA
specification: first prove a strong abstract-atomic specification, then specialise
to whatever is required by the client.

The CAP specification is parametrised by an abstract predicate Inv, repre-
senting the resource invariant to be protected by the lock. The client can choose
how to instantiate this predicate.3 The specification provides two abstract pred-
icates itself: isLock(x), which is a non-exclusive resource that allows a thread to
compete for the lock; and Locked(x), which is an exclusive resource that repre-
sents that the thread has acquired the lock, and allows it to release the lock.
The lock is specified as follows (we omit makeLock for brevity):

`
{

Locked(x) ∗ Inv
}
unlock(x)

{
emp

}
`
{

isLock(x)
}
lock(x)

{
isLock(x) ∗ Locked(x) ∗ Inv

}
isLock(x) ⇐⇒ isLock(x) ∗ isLock(x)

Locked(x) ∗ Locked(x) =⇒ false

To implement this specification, we must provide an interpretation for the
abstract predicates isLock and Locked. For this, we need to introduce a shared
region. As in CAP, a shared region encapsulates some resource that is available
to multiple threads. In our example, this resource will be the predicates L(x),
U(x) and Inv, plus some additional guard resource (described below). A shared
region is associated with a protocol, which determines how its contents change
over time. Following iCAP [16], the state of a shared region is abstracted, and
protocols are expressed as transition systems over these abstract states. A thread
may only change the abstract state of a region when it has the guard resource
associated with the transition to be performed. An interpretation function as-
sociates each abstract state of a region with a concrete assertion. In summary,
to specify a region we must supply the guards for the region, an abstract state
transition system that is labelled by these guards, and a function interpreting
abstract states as assertions.

3 The restriction is that the predicate must be stable — i.e. invariant under interference
from the environment.
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In CAP, guards consist of (parametrised) names, associated with fractional
permissions. In TaDA, we are more general, effectively allowing guards to be
taken from any separation algebra. This gives us more flexibility in specifying
complex usage patterns for regions. For the CAP lock, we need only a very simple
guard separation algebra: there is a single, indivisible guard named K (for ‘key’),
as well as the empty guard 0. As a separation algebra, guard resources must have
a partial composition operator that is associative and commutative. In this case,
0 • x = x = x • 0 for all x ∈ {0,K}, and K •K is undefined.

The transition system for the region will have two states: 0 and 1, correspond-
ing to unlocked and locked states respectively. Intuitively, any thread should be
allowed to lock the lock, if it is unlocked, but only the thread holding the ‘key’
should be able to unlock it. This is specified by the labelled transition system:

0 : 0 1 K : 1 0

It remains to give an interpretation for the abstract states of the transition
system. To do so, we must have a name for the type of region we are defining;
we shall use CAPLock. It is possible for there to be multiple regions associated
with the same region type name. To distinguish them, each region has a unique
region identifier, which is typically annotated as a subscript. A region speci-
fication may take some parameters that are used in the interpretation. With
CAPLock, for instance, the address of the lock is such a parameter. We thus
specify the type name, region identifier, parameters and state of a region in the
form CAPLockr(x, s).

The region interpretation for CAPLock is given by:

I(CAPLockr(x, 0)) , U(x) ∗ [K]r ∗ Inv

I(CAPLockr(x, 1)) , L(x)

With this interpretation, the guard K and invariant Inv are in the region when
it is in the unlocked state. This means that, when a thread acquires the lock, it
takes ownership of the guard and the lock invariant by removing them from the
region. Having the guard K allows the thread to subsequently release the lock,
returning the guard and invariant to the region.

We can now give an interpretation to the predicates isLock(x) and Locked(x):

isLock(x) , ∃r. ∃s ∈ {0, 1} .CAPLockr(x, s)

Locked(x) , ∃r.CAPLockr(x, 1) ∗ [K]r

It remains to prove the specifications for the procedures and the axioms. The
key proof rule is “use atomic”. A simplified version of the rule is as follows:

∀x ∈ X. (x, f(x)) ∈ Tt(G)∗

`

A

x ∈ X.
〈
I(ta(x)) ∗ [G]a

〉
C
〈
I(ta(f(x))) ∗ q

〉
`
{
∃x ∈ X. ta(x) ∗ [G]a

}
C
{
∃x ∈ X. ta(f(x)) ∗ q

}
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{
Locked(x) ∗ Inv

}
a
b
st

ra
ct

;
q
u
a
n
ti

fy
r

{
CAPLockr(x, 1) ∗ [K]r ∗ Inv

}
u
se

a
to

m
ic

〈
L(x) ∗ [K]r ∗ Inv

〉
fr

a
m

e:
[K

] r
∗
In
v 〈

L(x)
〉

unlock(x)〈
U(x)

〉
〈
U(x) ∗ [K]r ∗ Inv

〉{
CAPLockr(x, 0)

}
// weaken to stabilise{
∃s ∈ {0, 1} .CAPLockr(x, s)

}{
emp

}

{
isLock(x)

}

a
b
st

ra
ct

;
q
u
a
n
ti

fy
r

{
∃s ∈ {0, 1} .CAPLockr(x, s)

}

u
se

a
to

m
ic

A

s ∈ {0, 1} .〈
(L(x) ∧ s = 1) ∨
(U(x) ∗ [K]r ∗ Inv ∧ s = 0)

〉

fr
a
m

e:
s

=
0
→

[K
] r
∗
In
v 〈

(L(x) ∧ s = 1) ∨ (U(x) ∧ s = 0)
〉

l
:=

(s
=

0
)

A

l ∈ B.〈
(L(x) ∧ ¬l) ∨ (U(x) ∧ l)

〉
lock(x)〈
L(x) ∧ l

〉
〈
L(x) ∧ s = 0

〉
〈
L(x) ∗ [K]r ∗ Inv

〉{
CAPLockr(x, 1) ∗ [K]r ∗ Inv

}{
isLock(x) ∗ Locked(x)

}
Fig. 1. Derivation of CAP lock specifications.

This rule allows a region a, with region type t, to be opened so that it may
be updated by C, from some state x ∈ X to state f(x). In order to do so, the
precondition must include a guard G that is sufficient to perform the update to
the region, in accordance with the labelled transition system — this is established
by the first premiss.

The proofs of the unlock and lock operations are given in Fig. 1. In the
unlock proof, note that the immediate postcondition of the “use atomic” is not
stable, since it is possible for the environment to acquire the lock. For illustrative
purposes, we weaken it minimally to a stable assertion, although it could be
weakened to emp directly.

The lock proof uses the

A

quantifier in the premiss of the “use atomic” to
account for the fact that, in the precondition, the lock could be in either state.
The proof uses the frame rule, with a frame that is conditional on the state of the
lock. It also uses the substitution rule to replace the boolean variable l, recording
the state of the lock when the atomic operation happens, with the variable s,
representing the state of CAPLock region. To derive the final postcondition,
we use the fact that region assertions, since they refer to shared resource, are
freely duplicable: i.e. CAPLockr(x, 1) ≡ CAPLockr(x, 1) ∗CAPLockr(x, 1).
The axiom isLock(x) ⇐⇒ isLock(x)∗ isLock(x) similarly follows from the dupli-
cability of region assertions. Finally, the axiom Locked(x) ∗ Locked(x) =⇒ false
follows from the fact that K •K is undefined.

Note that neither of the bad specifications for lock(x) could be used in this
derivation: the first because there would be no way to express that the frame
[K]r ∗ Inv is conditional on the state of the lock; and the second because we could
not combine both cases in a single derivation.
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function makeLock() {
v := alloc(1);
[v] := 0;
return v;
}

function unlock(x) {
[x] := 0;

}

function lock(x) {
do {
b := CAS(x, 0, 1);

} while (b = 0);
}

Fig. 2. Lock operations.

Spin Lock Implementation. We consider a spin lock implementation of the
atomic lock specification. The code is given in Fig. 2. We make use of three
atomic operations that manipulate the heap. The operation x := [y] reads the
value of the heap position y to the variable x. The operation [x] := y stores the
value y in the heap position x. Finally, CAS(x, v, w) checks if the value at heap
position x is v: if so, it replaces it with w and returns 1; if not, it returns 0.

To verify this implementation against the atomic specification, we must give
a concrete interpretation of the abstract predicates. To do this, we introduce a
new region type, Lock. There is only one non-empty guard for a Lock region,
named G (for ‘guard’), much as for CAPLock. There are also two states for
a Lock region: 0 and 1, representing unlocked and locked respectively. A key
difference from CAPLock is that transitions in both directions are guarded by
G. The labelled transition system is as follows:

G : 0 1 G : 1 0

We also give an interpretation to each abstract state as follows:

I(Locka(x, 1)) , x 7→ 1 I(Locka(x, 0)) , x 7→ 0

We now define the interpretation of the predicates as follows:

L(x) , ∃a.Locka(x, 1) ∗ [G]a

U(x) , ∃a.Locka(x, 0) ∗ [G]a

The abstract predicate L(x) asserts there is a region with identifier a and the
region is in state 1. It also states that there is a guard [G]a which will be used
to update the region. U(x) analogously states that the region is in state 0.

To prove the implementations against our atomic specifications, we use Ta-
DA’s “make atomic” rule. A slightly simplified version of the rule is as follows:

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

a : x ∈ X  Q(x) `
{
∃x ∈ X. ta(x)
∗ a Z⇒ �

}
C
{
∃x ∈ X, y ∈ Q(x).

a Z⇒ (x, y)

}
`

A

x ∈ X.
〈
ta(x) ∗ [G]a

〉
C
〈
ta(Q(x)) ∗ [G]a

〉
This rule establishes that C atomically updates region a, from some state x ∈ X
to some state y ∈ Q(x). To do so, it requires the guard G for the region, which
must permit the update according to the transition system — this is established
by the first premiss.
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A

l ∈ B.〈
(L(x) ∧ ¬l) ∨ (U(x) ∧ l)

〉

a
b
st

ra
ct

;
q
u
a
n
ti

fy
a

〈
(Locka(x, 1) ∗ [G]a ∧ ¬l) ∨ (Locka(x, 0) ∗ [G]a ∧ l)

〉

y
:=

if
l

th
en

0
el

se
1

A

y ∈ {0, 1} .〈
Locka(x, y) ∗ [G]a

〉

m
a
k
e

a
to

m
ic

a : y ∈ {0, 1} 1 ∧ y = 0 `{
∃y ∈ {0, 1} .Locka(x, y) ∗ a Z⇒ �

}
do {{
∃y ∈ {0, 1} .Locka(x, y) ∗ a Z⇒ �

}

u
p

d
a
te

re
g
io

n A

n ∈ {0, 1} .〈
x 7→ n

〉
b := CAS(x, 0, 1);〈

(x 7→ 1 ∧ n = 0 ∧ b = 1) ∨
(x 7→ n ∧ n 6= 0 ∧ b = 0)

〉
{
∃y ∈ {0, 1} .Locka(x, y) ∗
(a Z⇒ (0, 1) ∧ b = 1 ∨ a Z⇒ � ∧ b = 0)

}
} while (b = 0);{
a Z⇒ (0, 1) ∧ b = 1

}〈
Locka(x, 1) ∗ [G]a ∧ y = 0

〉〈
Locka(x, 1) ∗ [G]a ∧ l

〉〈
L(x) ∧ l

〉
Fig. 3. Proof of the lock(x) operation.

The second premiss introduces two new notations. The first, a : x ∈ X  
Q(x), is called the atomicity context. The atomicity context records the abstract
atomic action that is to be performed. The second, a Z⇒ −, is the atomic tracking
resource. The atomic tracking resource indicates whether the atomic update has
occurred (the a Z⇒ � indicates it has not) and, if so, the state of the shared
region immediately before and after (the a Z⇒ (x, y)). The resource a Z⇒ � also
plays two special roles that are normally filled by guards. Firstly, it limits the
interference on region a: the environment may only update the state so long
as it remains in the set X, as specified by the atomicity context. Secondly, it
confers permission for the thread to update the region from state x ∈ X to any
state y ∈ Q(x); in doing so, the thread also updates a Z⇒ � to a Z⇒ (x, y). This
permission is expressed by the “update region” rule, and ensures that the atomic
update only happens once.

In essence, the second premiss is capturing the notion of atomicity (with
respect to the abstraction in the conclusion) and expressing it as a proof obliga-
tion. Specifically, the region must be in state x for some x ∈ X, which may be
changed by the environment, until at some point the thread updates it to some
y ∈ Q(x). The atomic tracking resource bears witness to this.

The proof of the lock(x) implementation is given in Fig. 3. The proof first
massages the specification into a form where we can apply the “make atomic”
rule. The atomicity context allows the region a to be in either state, but insists
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that it must have been in the unlocked state when the atomic operation takes
effect (Q(1) = ∅ while Q(0) = {1}). The “update region” rule conditionally
performs the atomic action — transitioning the region from state 0 to 1, and
recording this in the atomic tracking resource — if the atomic compare-and-swap
operation succeeds. The proofs for makeLock and unlock are in the appendix A.

Remark 1. It is possible to prove the following alternative implementation of
unlock(x) with the same atomic specification:

`
〈
L(x)

〉
[x] := 1; [x] := 0

〈
U(x)

〉
The first write to x has no effect, since the specification asserts that the lock
must be locked initially. This code would clearly not be atomic in a different
context; it would not satisfy the specification `

〈
L(x) ∨ U(x)

〉
unlock(x)

〈
U(x)

〉
,

for example. Since the specification constrains the client, it allows flexibility in
the implementation.

2.2 Multiple Compare-and-swap (MCAS)

Abstract Specification. We look at an interface over the heap which provides
atomic double-compare-and-swap (dcas) and triple-compare-and-swap (3cas)
operations, in addition to the basic read, write and compare-and-swap opera-
tions. It makes use of two abstract predicates: MCL(l) to represent an instance
of the MCAS library with address l; and MCP(l, x, v) to represent the “MCAS
heap cell” at address x with value v, protected by instance l. There is an ab-
stract disjointness, as we can view each heap cell as disjoint from the others at
the abstract level, even if that is not the case with the implementation itself. The
specification for creating the interface, transferring memory cells to and from it
as well as manipulating it is given in Fig. 4.

Implementation. We give a straightforward coarse-grained implementation of
the MCAS specification. The operation makeMCL creates a lock which protects
updates to pointers under the control of the library. The other operations simply
acquire the lock, perform the appropriate reads and writes, and then release the
lock.

The full code is given in Fig. 5.

We interpret the abstract predicates using a single shared region, with type
name MCAS. The abstract states of the region are partial heaps, which represent
the part of the heap that is protected by the module. For instance, the abstract
state x 7→ v • y 7→ w indicates that heap cells x and y are under the protection
of the module, with logical values v and w respectively. Note that the physical
values at x and y need not be the same as their logical values, specifically when
the lock has been acquired and they are being modified.

For the MCAS region, there are five kinds of guard. The Own(x) guard
confers ownership of the heap cell at address x under the control of the region.
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`
{
emp

}
l := makeMCL()

{
MCL(l)

}
`
{
x 7→ v ∗MCL(l)

}
makeMCP(l, x)

{
MCP(l, x, v) ∗MCL(l)

}
`
{
MCP(l, x, v)

}
unmakeMCP(l, x)

{
x 7→ v

}
`

A

v.
〈
MCP(l, x, v)

〉
y := read(l, x)

〈
y = v ∧MCP(l, x, v)

〉
`

A

v.
〈
MCP(l, x, v)

〉
write(l, x, w)

〈
MCP(l, x, w)

〉
`

A

v.

〈
MCP(l, x, v)

〉
b := cas(l, x, v1, v2)

〈
if v = v1 then b = 1 ∧MCP(l, x, v2)

else b = 0 ∧MCP(l, x, v)

〉
`

A

v, w.
〈
MCP(l, x, v) ∗MCP(l, y, w)

〉
b := dcas(l, x, y, v1, w1, v2, w2)〈 if v = v1 ∧ w = w1

then b = 1 ∧MCP(l, x, v2) ∗MCP(l, y, w2)
else b = 0 ∧MCP(l, x, v) ∗MCP(l, y, w)

〉

`

A

v, w, u.
〈
MCP(l, x, v) ∗MCP(l, y, w) ∗MCP(l, z, u)

〉
b := 3cas(l, x, y, z, v1, w1, u1, v2, w2, u2)〈 if v = v1 ∧ w = w1 ∧ u = u1

then b = 1 ∧MCP(l, x, v2) ∗MCP(l, y, w2) ∗MCP(l, z, u2)
else b = 0 ∧MCP(l, x, v) ∗MCP(l, y, w) ∗MCP(l, z, u)

〉

MCL(l) ⇐⇒ MCL(l) ∗MCL(l)

MCP(l, x, v) ∗MCP(l, x, w) =⇒ false

Fig. 4. The abstract specification for the MCAS module.

This guard is used by all operations of the library that access the heap cell x. The
following implication ensures that there can only be one instance of Own(x):

[Own(x)]m ∗ [Own(x)]m =⇒ false

We amalgamate the Own guards for heap cells that are not currently under the
protection of the module into Owned(X), where X is the set of all cells that
are protected. We have the following equivalence:

[Owned(X)]m ⇐⇒ [Owned(X ] {x})]m ∗ [Own(x)]m

Initially the set X will be empty. When we add an element x 7→ v to the region,
we get a guard Own(x) that allows us to manipulate the abstract state for that
particular x. There can be only one Owned guard:

[Owned(X)]m ∗ [Owned(Y )]m =⇒ false

The remaining guards are effectively used as auxiliary state. When a thread
acquires the lock, it removes some heap cells from the shared region in order to
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function makeMCL() {
l := makeLock();
return l;
}

function makeMCP(l, x) {
lock(l);
unlock(l);
return ;
}

function unmakeMCP(l, x) {
lock(l);
unlock(l);
return ;
}

function read(l, x) {
lock(l);
v := [x];
unlock(l);
return v;
}

function write(l, x, v) {
lock(l);
[x] := v;
unlock(l);
return ;
}

function cas(l, x, v1, v2) {
lock(l);
v := [x];
if (v = v1) {

[x] := v2;
r := 1;
} else {
r := 0;
}
unlock(l);
return r;

}
function dcas(l, x, y, v1, w1, v2, w2) {
lock(l);
v := [x];
w := [y];
if (v = v1 and w = w1) {

[x] := v2;
[y] := w2;
r := 1;

} else {
r := 0;
}
unlock(l);
return r;
}

Fig. 5. Multiple compare-and-swap operations.
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access them. The Locked(h) guard will be used to record that the heap cells in
h have been removed in this way. The thread that acquired the lock will have a
corresponding Key(h) guard. When it releases the lock, the two guards will be
reunited inside the region to form the Unlocked guard. This is expressed by
the following equivalence:

[Unlocked]m ⇐⇒ [Locked(h)]m ∗ [Key(h)]m

The transition system for the region is parametric in each heap cell. It allows
anyone to add the resource x 7→ v to the region. (There is no need to guard
this action, as the resource is unique and as such only one thread can do it for
a particular value of x.) It allows the value of x to be updated using the guard
Own(x). Finally, given the guard Own(x), x 7→ v can be removed from the
region. We formally define the transition system as follows:

0 : ∀h, x, v. h x 7→ v • h
Own(x) : ∀h, v, w. x 7→ v • h x 7→ w • h
Own(x) : ∀h, x, v. x 7→ v • h h

We define the interpretation of abstract states for the MCAS region:

I(MCASm(l, h)) , [Owned(dom(h))]m ∗ (U(l) ∗ h ∗ [Unlocked]m ∨
∃h1, h2. L(l) ∗ h1 ∗ [Locked(h2)]m ∧ h = h1 • h2)

Internally, the region may be in one of two states, indicated by the disjunction.
Either the lock l is unlocked, and the heap cells corresponding to the abstract
state of the region are actually in the region, as well as the Unlocked guard.
Or the lock l is locked, and some portion h1 of the abstract heap is in the region,
while the remainder h2 has been removed, together with the Key(h2) guard,
leaving behind the Locked(h2) guard. In both cases, the Owned(dom(h)) guard
belongs to the region, encapsulating the Own guards for heap addresses that
are not protected.

We now give an interpretation to the predicates as follows:

MCL(l) , ∃m,h.MCASm(l, h)

MCP(l, x, v) , ∃m,h.MCASm(l, x 7→ v • h) ∗ [Own(x)]m

The predicate MCL(l) states the existence of the shared region, but makes no
assumptions about its state. The predicate MCP(l, x, v) states that there is x
with value v, which it owns, and possibly other heap cells in the region.

We can now prove that the specification is satisfied by the implementation.
For brevity, we only show the dcas command in Fig. 6. The other commands
have similar proofs shown in appendix B.
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2.3 Resource Transfer

Consider an addition to the MCAS library: the readTo operation takes an MCAS
heap cell and an ordinary heap cell and copies the value of the former into the
latter. Such an operation could be implemented as follows:

function readTo(l, x, y) { v := read(l, x); [y] := v; }

This implementation atomically reads the MCAS cell at x, then writes the value
to the cell at y. The overall effect is non-atomic in the sense that a concurrent
environment could update x and then witness y being updated to the old value
of x. However, if the environment’s interaction is confined to the MCAS cell, the
effect is atomic.

TaDA allows us to specify this kind of partial atomicity by splitting the pre-
and postcondition of an atomic judgement into a private and a public part. The
private part will contain resources that are particular to the thread — in this
example, the heap cell at y. When the atomic triple is used to update a region
(e.g. with the “use atomic” rule), these private resources cannot form part of
the region’s invariant. The public part will contain resources that can form part
of a region’s invariant — in this example, the MCAS cell at x.

The generalised form of our atomic judgements is:

`

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y.
〈
qp(x,y)

∣∣ q(x,y)
〉

Here, pp is the private precondition, p(x) is the public precondition, qp(x,y) is
the private postcondition, and q(x,y) is the public postcondition. The private
precondition is independent of x, since the environment can change x. The two
parts of the postcondition are linked by y, which is chosen arbitrarily by the
implementation when the atomic operation appears to take effect.

The readTo operation can be specified as follows:

`

A

v, w.
〈
y 7→ w

∣∣MCP(l, x, v)
〉
readTo(l, x, y)

〈
y 7→ v

∣∣MCP(l, x, v)
〉

One way of understanding such specifications is in terms of ownership transfer
between a client and a module, as in [10]: ownership of the private precondition is
transferred from the client; ownership of the private postcondition is transferred
to the client. In this example, the same resources (albeit modified) are transferred
in and out, but this need not be the case in general. For instance, an operation
could allocate a fresh location in which to store the retrieved value, which is
then transferred to the client.

While it should be clear that this judgement generalises our original atomic
judgement, it is revealing that it also generalises the non-atomic judgement.
Indeed, `

{
p
}
C
{
q
}

is equivalent to `
〈
p
∣∣ true

〉
C
〈
q
∣∣ true

〉
.

3 Logic

We give an overview of the key TaDA proof rules that deal with atomicity in
Fig. 7. Here, we do not formally define the syntax and semantics of our assertions,
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although we describe how they are modelled in §5. These details are given in the
technical report [3].

We implicitly require the pre- and postcondition assertions in our judgements
to be stable: that is, they must account for any updates other threads could have
sufficient resources to perform.

Until now, we have elided a detail of the proof system: region levels. Each
judgement of TaDA includes a region level λ in the context. This level is simply
a number that indicates that only regions below level λ may be opened in the
derivation of the judgement. For this to be meaningful, each region is associated
with a level (indicated as a superscript) and rules that open regions require that
the level of the judgement is higher than the level of the region being opened.
The purpose of the levels is to ensure that a region can never be opened twice
in a single branch of the proof tree, which could unsoundly duplicate resources.
The rules that open regions enforce this by requiring the level of the conclusion
(λ + 1) to be above the level of the region (λ), which is also the level of the
premiss. For our examples, the level of each module’s regions just needs to be
greater than the levels of modules that it uses.

In all of our examples, the atomicity context describes an update to a single
region. In the logic, there is no need to restrict in this way, and an atomicity
context A may describe updates to multiple regions (although only one update
to each). Both atomic and non-atomic judgements may have atomicity contexts.

The frame rule, as in separation logic, allows us to add the same resources to
the pre- and postcondition, which are untouched by the command. Our frame
rule separately adds to both the private and public parts. Note that the frame for
the public part may be parametrised by the

A

-bound variable x. (We exploited
this fact in deriving the CAP lock specification.)

The substitution rule allows us to change the domain of

A

-bound variables.
A consequence of this rule is that we can instantiate

A

-variables much like uni-
versally quantified variables, simply by choosing X ′ to be a single-element set.

The atomicity weakening rule allows us to convert private state from the
conclusion into public state in the premiss.

The next three rules allow us to access the content of a shared region by using
an atomic command. With all of the rules, the update to the shared region must
be atomic, so its interpretation is in the public part in the premiss. (The region
is in the public part in the conclusion also, but may be moved by applying
atomicity weakening.)

The open region rule allows us to access the contents of a shared region
without updating its abstract state. The command may change the concrete
state of the region, so long as the abstract state is preserved. This is exemplified
by its use in the DCAS proof in Fig. 6, where concretely the lock becomes locked,
but the abstract state of the MCAS region is not affected.

The use atomic rule allows us to update the abstract state of a shared region.
To do so, it is necessary to have a guard for the region being updated, such that
the change in state is permitted by this guard according to the transition system
associated with the region. This rule takes a C which (abstractly) atomically
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updates the region a from some state x ∈ X to the state f(x). It requires the
guard G for the region, which allows the update according to the transition
system, as established by one of the premisses. Another premiss states that the
command C performs the update described by the transition system of region
a in an atomic way. This allows us to conclude that the region a is updated
atomically by the command C. Note that the command is not operating at the
same level of abstraction as the region a. Instead it is working at a lower level of
abstraction, which means that if it is atomic at that level it will also be atomic
at the region a level.

The update region rule similarly allows us to update the abstract state of
a shared region, but this time the authority comes from the atomicity context
instead of a guard. In order to perform such an update, the atomic update to the
region must not already have happened, indicated by a Z⇒ � in the precondition
of the conclusion. In the postcondition, there are two cases: either the appropriate
update happened, or no update happened. If it did happen, the new state of the
region is some z ∈ Q(x), and both x and z are recorded in the atomicity tracking
resource. If it did not, then both the region’s abstract state and the atomicity
tracking resource are unchanged. The premiss requires the command to make a
corresponding update to the concrete state of the region. The atomicity context
and tracking resource are not present in the premiss; their purpose is rather to
record information about the atomic update that is performed for use further
down the proof tree.

It is necessary for the update region rule to account for both the case where
the update occurs and where it does not. One might expect that the case
with no update could be dealt with by the open region rule, and the results
combined using a disjunction rule. However, a general disjunction rule is not
sound for atomic triples. (If we have 〈p1〉C 〈q〉 and 〈p2〉C 〈q〉, we may not have
〈p1 ∨ p2〉C 〈q〉 since C might rely on the environment not changing between p1

and p2.) The proof of the atomic specification for the spin lock uses the condi-
tional nature of the update region rule.

Finally, we revisit the make atomic rule, which elaborates on the version
presented in §2.1. As before, a guard in the conclusion must permit the update
in accordance with the transition system for the region. This is replaced in the
premiss by the atomicity context and atomicity tracking resource, which tracks
the occurrence of the update. One difference is the inclusion of the private state,
which is effectively preserved between the premiss and the conclusion. A second
difference is the

E

-binding of the resulting state of the atomic update. This allows
the private state to reflect the result of the update.

4 Case Study: Concurrent Deque

We show how to use TaDA to specify a double-ended queue (deque) and verify
a fine-grained implementation. A deque has operations that allow elements to
be inserted and removed from both ends of a list.
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This example shows that TaDA can scale to multiple levels of abstraction:
the deque uses MCAS, which uses the lock, which is based on primitive atomic
heap operations. This proof development would not be possible with CAP, since
atomicity is central to the abstractions at each level. It would also not be possi-
ble using traditional approaches to linearisability, since separation of resources
between and within abstraction layers is also crucial.

4.1 Abstract specification

We represent the deque state by the abstract predicate Deque(d, vs). It asserts
that there is a deque at address d with list of elements vs. The makeDeque()
operation creates an empty deque and returns its address. It has the following
specification:

λ `
{

emp
}
d := makeDeque()

{
Deque(d, [])

}
The operations pushLeft(d, v) and popLeft(d) are specified to update the state
of the deque atomically:

λ `

A

vs.
〈
Deque(d, vs)

〉
pushLeft(d, v)

〈
Deque(d, v : vs)

〉
λ `

A

vs.
〈
Deque(d, vs)

〉
v := popLeft(d)〈

if vs = [] then v = 0 ∧ Deque(d, vs)
else vs = v : vs′ ∧ v = v ∧ Deque(d, vs′)

〉
The pushLeft(d, v) operation adds the value v to the left of the deque. The
popLeft(d) operation tries to remove an element from the left end of the deque.
However, if the deque is empty, then it returns 0 and does not change its state.
Otherwise, it removes the element at the left, updating the state of the deque,
and returns the removed valued. The pushRight and popRight operations have
analogous specifications, operating on the right end of the deque.

4.2 The “Snark” Linked-list Deque Implementation

We consider an implementation that represents the deque as a doubly-linked list
of nodes, based on Snark [7]. An example of the shape of the data structure is
shown in Fig. 10. Each node consists of a left-link pointer, a right-link pointer,
and a value. There are two anchor variables, left hat and right hat (l̂ and r̂ in
the figure), that generally point to the leftmost node and the rightmost node
in the list, except when the deque is empty. When the deque is not empty, its
leftmost node’s left-link points to a so-called dead node — a node whose left- and
right-links point to itself (e.g. node a in the figure). Symmetrically, the rightmost
node’s right-link points to a dead node. When the deque is empty, then the left
hat and the right hat point to dead nodes.

We focus on the popLeft implementation. This implementation first reads the
left hat value to a local variable. It then reads the left-link of the node referenced
by that variable. If both values are the same, it means that the node is dead



TaDA: A Logic for Time and Data Abstraction 19

and the list might be empty. It is necessary to recheck the left hat to confirm,
since the node might have died since the left hat was first read. If the deque is
indeed empty, the operation returns 0; otherwise it is restarted. If the left node
is not dead, it tries to atomically update the left hat to point to the node to its
right, and, at the same time, update the left node to be dead. (This could fail,
in which case the operation restarts.) An example of such update is shown in
Fig. 10. In order to update three pointers atomically, the implementation makes
use of the 3cas command described in §2.2.

To verify the popLeft, we introduce a new region type, Deque. The region
has two parameters, d standing for the deque address and L for the MCAS ad-
dress. There is only one non-empty guard for the region, named G. We represent
the abstract state by a tuple (ns, ds) where: ns is a list of pairs of node addresses
and values, the values representing the elements stored in the deque; and ds is
a set of pairs of nodes addresses and values that were part of the deque, but are
now dead. We maintain the set of dead nodes to guarantee that after a node is
removed from the deque, its value can still be read. In order to change the ab-
stract state of the deque, we require the guard G. The labelled transition system
is as follows:

G : ∀n, v, ns, ds. (ns, ds) ((n, v) : ns, ds)
G : ∀n, v, ns, ds. (ns, ds) (ns : (n, v), ds)
G : ∀n, v, ns, ds. ((n, v) : ns, ds) (ns, ds ] {(n, v)})
G : ∀n, v, ns, ds. (ns : (n, v), ds) (ns, ds ] {(n, v)})

In order to provide an interpretation for the abstract state, we first define a
number of auxiliary predicates. We use field notation: E.field is shorthand for
E+offset(field). Here, offset(left) = 0, offset(right) = 1, and offset(value) =
offset(mcl) = 2.

A node at address n in the deque will make use of the MCAS cells:

node(L, n, l, r, v) ≡ MCP(L, n.left, l) ∗MCP(L, n.right, r) ∗ n.value 7→ v

Here l and r are the left- and right-link addresses. The L parameter is the
address of the MCAS lock. A dead node is defined as:

dead(L, n, v) ≡ node(L, n, n, n, v)

We also define a predicate to stand for the doubly-linked list that contains all
the elements in the list, (i.e. the shaded nodes in the figure).

dlseg(L, l, r, n,m, ns) ≡ ns = [] ∧ l = m ∧ r = n ∨
∃v, ns′, p. ns = (l, v) : ns′ ∧ node(L, l, n, p, v) ∗ dlseg(L, p, r, l,m, ns′)

We define a predicate to include the dead nodes (ds) as well as the doubly-linked
list:

dls(L, l, r, ns, ds) ≡
∃a, b. (a,−), (b,−) ∈ ds ∧ dlseg(L, l, r, a, b, ns) ∗ �

(n,v)∈ds
dead(L, n, v)
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Note that there must be at least one dead node in ds.
Our last auxiliary predicate to represent the whole deque: the double linked

list; the anchors left hat and right hat; and the reference to the MCAS interface.

deque(d, L, ns, ds) ≡ ∃l, r. dls(L, l, r, ns, ds) ∗
MCP(L, d.left, l) ∗MCP(L, d.right, r) ∗ d.mcl 7→ L ∗MCL(L)

We now define the interpretation of abstract states as follows:

I(Dequea(d, L, ns, ds)) , deque(d, L, ns, ds)

We define the interpretation of the Deque predicate as follows:

Deque(d, vs) , ∃a, L, ns, ds.Dequea(d, L, ns, ds) ∗ [G]a ∧ vs = snds(ns)

where snds(ns) maps the second projection over the list of pairs ns.
To prove the implementation against our atomic specifications, we use the

“make atomic” rule again. We show the proof of the popLeft operation in Fig. 11.
The remaining proofs are given in the technical report [3].

5 Semantics

5.1 Operational Semantics

The operational semantics of our language are given in Figs. 12 and 13.

5.2 Model

Guards and Guard Algebras. We assume a set Guard that will contain all guards
that we might wish to use. A guard algebra ζ = (G, •,0,1) consists of:

– a carrier set G ⊆ Guard,
– an associative, commutative partial binary operator • : G × G ⇀ G,
– an identity element 0 ∈ G, with 0 • g = g for all g ∈ G, and
– a maximal element 1 ∈ G, with x ≤ 1 for all g ∈ G,

where
x ≤ y def⇐⇒ ∃z. x • z = y.

We denote by GAlg the set of all guard algebras.
Note that a guard algebra is a separation algebra (in the sense of [4]) with a

single unit, 0.

Abstract States and Transition Systems. We assume a set AState that will con-
tain all abstract region states that we might wish to use. For a given guard
algebra ζ, a guard-labelled transition system T : Gζ →mon P(AState× AState) is
a mapping from guards to relations. The mapping is monotone with respect to
the resource ordering (≤ζ) and subset ordering (⊆), meaning that having more
guard resource permits more transitions. Although we make no restriction on
the transition relation, in general, we shall use the reflexive-transitive closure
T (g)∗. We denote by ASTSζ the set of all ζ-labelled transition systems.
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Abstract Region Types. We assume a set RTName of region type names. An
abstract region typing

t ∈ ARType
def
= RTName→

∐
ζ∈GAlg

ASTSζ

maps region type names to pairs of guard algebras and guard-labelled transition
systems.

Heaps. We assume a set Val of program values, which includes a set Loc ⊆ Val

of program locations. A heap h ∈ Heap
def
= Loc ⇀fin Val is a finite partial

function from locations to values. Heaps form a separation algebra (Heap,], ∅),
where ] is the disjoint union of partial functions, and ∅ is the partial function

with the empty domain. Heaps are ordered by resource ordering: h1 ≤ h2
def⇐⇒

∃h3. h1 ] h3 = h2.

Abstract Predicates. We assume a set APName of abstract predicate names. An
abstract predicate a ∈ APName×Val∗ consists of an abstract predicate name and

a list of parameters. An abstract predicate bag b ∈ APBag
def
= Mfin(APName× Val∗)

is a finite multiset of abstract predicates. Abstract predicate bags form a sep-
aration algebra (APBag,∪, ∅), where ∪ is multiset union, and ∅ is the empty
multiset. Abstract predicate bags are ordered by the usual subset order ⊆, which
corresponds to the resource order.

Levels. A level λ ∈ Level
def
= N is simply a natural number. Levels are ordered

by the usual well-founded ordering on natural numbers.

Note 1. It would be possible to take the levels from a more general well-founded
order. This might be useful if we need some kind of unbounded nesting of regions.
I cannot see any obvious use for this, though.

Region Assignments. We assume a (countably infinite) set of region identifiers,

RId. A region assignment r ∈ RAss
def
= RId ⇀fin Level×RTName×Val∗ is a finite

partial function from region identifiers to levels and parametrised region type

names. Region assignments are ordered by extension ordering: r1 ≤ r2
def⇐⇒

∀a ∈ dom(r1). r2(a) = r1(a).
For the following semantic definitions, we assume a fixed abstract region

typing t ∈ ARType.

Guard Assignments. Given a region assignment, r, a guard assignment

γ ∈ GAssr
def
=

∏
a∈dom(r)

Gζ(t(r(a)))

is a mapping from the regions declared in r to guards of the appropriate type for
each region. Guard assignments form a separation algebra (GAssr, •, λa.0ζ(t(r(a))))
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where • is the pointwise lift of the guard combination operators:

γ1 • γ2
def
= λa. γ1(a) • γ2(a)

For γ1 ∈ GAssr1 , γ2 ∈ GAssr2 with r1 ≤ r2, guards assignments are ordered
pointwise-extensionally:

γ1 ≤ γ2
def⇐⇒ ∀a ∈ dom(γ1). γ1(a) ≤ γ2(a).

Region States. Given a region assignment, r, a region state

ρ ∈ RStater
def
= dom(r)→ AState

is a mapping from the regions declared in r to abstract states. For ρ1 ∈ RStater1 ,

ρ2 ∈ RStater2 with r1 ≤ r2, region states are ordered extensionally: ρ1 ≤ ρ2
def⇐⇒

∀a ∈ dom(ρ1). ρ1(a) = ρ2(a).

Worlds. A world

w ∈World
def
=

∐
r∈RAss

(Heap× APBag × GAssr × RStater)

consists of a region assignment, a heap, an abstract predicate bag, a guard
assignment and a region state.

Worlds can be combined, provided they agree on the region assignment and
region state, by combining the remaining components in the appropriate separa-
tion algebras. Thus, worlds form a (multi-unit) separation algebra (World, ·, emp)
where

(r, h1, b1, γ1, ρ) · (r, h2, b2, γ2, ρ)
def
= (r, h1 ] h2, b1 ∪ b2, γ1 • γ2, ρ)

emp
def
=
{

(r, ∅, ∅, λa.0ζ(t(r(a))), ρ)
∣∣ r ∈ RAss, ρ ∈ RStater

}
Worlds are also ordered by the product order. If w1 ≤ w2, then w2 may

be obtained from w1 by introducing new regions (with arbitary associated type
name and state) and adding heap, abstract-predicate and guard resources.

World Predicates. A world predicate p ∈WPred
def
= P↑(World) is a set of worlds

that is upwards closed with respect to the world ordering. That is, if w ∈ p and
w ≤ w′ then w′ ∈ p.

The composition operator on worlds is lifted to world predicates:

p1 ∗ p2
def
= {w | ∃w1 ∈ p1, w2 ∈ p2. w = w1 • w2}

(That the results is upwards closed is not difficult to check: any extension to
the composition of two worlds can be tracked back and applied to one of the
components.) The ∗ operator is associative and commutative with identity World.
To denote ∗ iterated over a finite set X, we write �x∈X p(x).
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Worlds with Atomic Tracking. The atomic tracking separation algebra is defined
to be ((AState×AState)]{�,♦} , •, (AState×AState)∪{♦}), where • is defined
by

� • ♦ = � = ♦ • �
♦ • ♦ = ♦

(x, y) • (x, y) = (x, y)

and undefined in all other cases. The resource ordering on this separation algebra
is characterised by the two rules: k ≤ k (for all k ∈ (AState× AState) ] {�,♦})
and ♦ ≤ �.

Given a finite set of region identifiers R ⊆fin RId, a world with atomic track-

ing ϕ ∈ AWorldR
def
= World×(R → (AState×AState)]{�,♦}) consists of a world

together with a mapping that associates atomic tracking resources with each re-
gion in R. The mapping records if an atomic update has taken place on a region,
and, if so, what state change the region underwent in the update. Specifically, ♦
and � record that the atomic update has not yet happened, while (x, y) records
that the update has happened, and it entailed updating the abstract state from
x to y. The difference between ♦ and � is that � embodies a right to perform
the update, while ♦ does not.

By lifting • to maps, the maps form a separation algebra. Consequently, by
combining the operators of its components, AWorldR is also an ordered separation
algebra.

We consider that World = AWorld∅.
As with worlds, we consider predicates over worlds with atomic tracking

p ∈ AWPredR
def
= P↑(AWorldR) to be upwards-closed sets. These predicates

similarly have a ∗ operator.

Atomicity Context. An atomicity context A ∈ AContext
def
= RId ⇀fin AState ⇀

P(AState) is a (finite) partial mapping from region identifiers to partial, non-
deterministic abstract state transformers. In the context of proving that an oper-
ation is abstractly atomic, the atomicity context records the abstract operation
to be performed. This has implications in terms of both how the thread per-
forming the operation and the environment can update the region mentioned in
the context.

Rely Relation. Interference by the environment is abstracted by the rely rela-
tion. For a given atomicity context A ∈ AContext, with R = dom(A), the rely
relation RA ⊆ AWorldR × AWorldR is the smallest reflexive-transitive relation
that satisfies the following rules:

g # g′ (s, s′) ∈ Tt(n)(g′)∗ (d(a) ∈ {�,♦} ⇒ s′ ∈ dom(A(a)))

(r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s], d) RA (r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s′], d)

(s, s′) ∈ A(a)

(r[a 7→ n], h, b, γ, ρ[a 7→ s], d[a 7→ ♦]) RA (r[a 7→ n], h, b, γ, ρ[a 7→ s′], d[a 7→ (s, s′)])
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The first rule expresses that the environment may make any update to a region
for which it can have a guard that permits it in the corresponding transition
system. (It can only have such a guard if it is compatible with the guard held
by the thread, expressed as g # g′.) The exception to this is that, if an atomic
update is pending then the environment must not take the state outside of those
on which the atomic operation is set to perform.

The second rule expresses that having the � entitles one to perform an update
corresponding to that expressed in the atomicity context.

Note that interference is explicitly confined to the shared regions and atomic
tracking resources. Furthermore, extending the atomicity context decreases the
possible interference of the environment.

Stable Predicates. Given an atomicity context A ∈ AContext, the stable predi-
cates are those which are closed under the associated rely relation. That is, we
define the stability judgement as follows:

A � p stable
def⇐⇒ RA (p) ⊆ p.

We call the stable predicates views (as in [4]) and denote the set of views (in
atomicity context A) by ViewA. We drop the subscript when the empty atomicity
context is intended.

If A′ is an extension of A, we have a coercion from ViewA to ViewA′ by
extending the atomicity tracking component for the additional regions in every
possible way.

Stable predicates are closed under ∗. That is

A � p stable ∧ A � q stable =⇒ A � p ∗ q stable

Region Interpretation. A region interpretation I ∈ RInterp
def
= Level×RTName×

Val∗ × RId × AState → View associates a view with each abstract state of each
parametrised region type. The parameters are used to specify, for example, the
address of a datastructure contained in the region. The region identifier is often
a necessary parameter as it is common for a region interpretation to refer to
guards for the region.4

Abstract Predicate Interpretation. An abstract predicate interpretation ι ∈ APInterp
def
=

APName× Val∗ → View associates a view with each abstract predicate.

For the following, assume a fixed region interpretation I and abstract predi-
cate interpretation ι.

4 Here, we have avoided having region interpretations directly referring to region inter-
pretations. Impredicative CAP [16] does support this by constructing the relevant
domains in the topos of trees. We opt for a simpler, if less powerful, alternative:
breaking self-reference by indirection through region type names.
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Region Collapse. Given a level λ ∈ Level, the region collapse of a world ϕ ∈
AWorldR′ is a set of worlds given by:

ϕ↓λ
def
=

{
ϕ · (w′, ∅)

∣∣∣∣∣ w′ ∈ �
{a | ∃λ′<λ.rϕ(a)=(λ′,−,−)}

I(rϕ(a), a, ρϕ(a))

}

This operation is lifted to predicates in a straightforward manner: p↓λ
def
=
⋃
ϕ∈p ϕ↓λ.

Abstract Predicate Collapse. The one-step abstract predicate collapse of a world
is a set of worlds given by:

(r, h, b, γ, ρ, d)�1
def
=

{
(r, h, ∅, γ, ρ, d) · (w, ∅)

∣∣∣∣ w ∈ �
a∈b

ι(a)

}
This is lifted to predicates: p�1

def
=
⋃
ϕ∈p ϕ�1. The one-step collapse is iterated to

give the multi-step collapse: p�n+1
def
= (p�n)�1.

The abstract predicate collapse of a predicate applies the multi-step collapse
to collapse all abstract predicates:

p�
def
= {ϕ | ∃n. ϕ ∈ p�n ∧ bϕ = ∅}

Note 2. This approach to interpreting abstract predicates is different from the
usual one. It effectively gives a step-indexed interpretation to the predicates: the
concrete interpretation is given by the finite unfoldings. If a predicate cannot be
made fully concrete by finite unfolding, then its semantics will be false.

Reification. The reification operation on worlds collapses the regions and the
abstract predicates, and then considers only the heap portion:

bϕcλ
def
= {hϕ′ | ϕ′ ∈ ϕ↓λ�}

This operation is lifted to predicates in the usual manner.

Guarantee Relation. Given a level λ ∈ Level, and atomicity contextA ∈ AContext,
the guarantee relation Gλ;A ⊆ AWorldR′ × AWorldR′ is defined as:

ϕ Gλ;A ϕ
′ def⇐⇒ ∀a. (∃λ′ ≥ λ. rϕ(a) = (λ′,−,−)) =⇒ ρϕ(a) = ρϕ′(a) ∧

∀a ∈ domA.

 (dϕ(a) = dϕ′(a) ∧ ρϕ(a) = ρϕ′(a)) ∨(
dϕ(a) = � ∧ dϕ′(a) = (ρϕ(a), ρϕ′(a))

∧ (ρϕ(a), ρϕ′(a)) ∈ A(a)

)
The guarantee relation enforces that regions with level λ or higher cannot be
modified. It also enforces that regions mentioned in the atomicity context can
only be updated using the atomicity context.

Note 3. It will be necessary to enforce that each execution step preserves re-
gions above a certain level, because these regions will simply be dropped by the
reification. If we didn’t constrain them in this way, a thread could change them
as it liked (resources permitting) without even making a concrete update!
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Semantic Judgements In the Views Framework [4], primitive atomic actions
are abstracted to relations on views by means of an atomic satisfaction judge-
ment. Here, we have an analogous judgement, but which is more complex as it
expresses the role of an action in performing an abstractly-atomic operation. To
express this role, we conceptually divide the view into a private and a public
part. A thread is at liberty to do as it pleases with the private part (subject
to preserving all stable frames). The public part, however, must be maintained
invariant by the thread until it performs its abstract atomic action, at which
point it updates the public part accordingly and thereafter loses access to it.
The primitive atomic satisfaction judgement therefore incorporates five asser-
tions: pp, the precondition for the private part; p, the precondition for the public
part; p′p, the postcondition for the private part where the atomic update does
not happen; q, the postcondition for the public part (when an atomic update
does happen — otherwise p plays the role); and qp, the postcondition for the
private part where the atomic update does happen.

Definition 1 (Primitive Atomic Satisfaction Judgement). The primitive
atomic satisfaction judgement λ;A � 〈pp | p〉 α 〈p′p | −〉 + 〈qp | q〉, where
λ ∈ Level, A ∈ AContext, α ∈ AAction and pp, p, p

′
p, q, qp ∈ ViewdomA, is defined

as:

λ;A � 〈pp | p〉 α 〈p′p | −〉+ 〈qp | q〉
def⇐⇒

∀r ∈ ViewA.∀ϕ ∈ pp ∗ p ∗ r. ∀h ∈ bϕcλ.∀h′ ∈ JαK(h).

∃ϕ′. ϕ Gλ;A ϕ
′ ∧ h′ ∈ bϕ′cλ ∧ ϕ′ ∈ (p′p ∗ p ∗ r) ∪ (qp ∗ q ∗ r)

Definition 2 (Primitive Atomic Satisfaction Judgement).

λ;A � 〈p〉α〈q〉 def⇐⇒
∀r ∈ ViewA.∀ϕ ∈ p ∗ r. ∀h ∈ bϕcλ.∀h′ ∈ JαK(h).

∃ϕ′. ϕ Gλ;A ϕ
′ ∧ h′ ∈ bϕ′cλ ∧ ϕ′ ∈ q ∗ r.

Definition 3 (Semantic Judgement). The semantic judgement

λ;A;Ω �

A

x ∈ X. 〈pp | p(x)〉 C

E

y ∈ Y. 〈qp(x,y) | q(x,y)〉

where

– λ ∈ Level is a level strictly greater than that of any region that will be affected
by the program;

– A ∈ AContext is the atomicity context, which constrains updates to regions
on which an abstractly atomic update is to be performed;

– Ω ∈ X × Y → Val → ViewdomA is the postcondition on return, which is
parametrised by the value returned;

– pp ∈ Store → ViewdomA is the private part of the precondition, which does
not correspond to resources in some opened shared region, and is parametrised
by the valuation of program variables;
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– p ∈ X → ViewdomA is the public part of the precondition, which may corre-
spond to resources from some opened shared regions, and is parametrised by
x ∈ X that tracks the precondition at the linearisation point;

– C ∈ Command is the program under consideration;
– qp ∈ X × Y → Store → ViewdomA is the private part of the postcondition,

which is parametrised by x ∈ X that tracks the precondition at the linearisa-
tion point, by y ∈ Y that tracks the postcondition at the linearisation point,
and by the valuation of program variables;

– q ∈ X × Y → ViewdomA is the public part of the postcondition, which is
similarly parametrised by x ∈ X and y ∈ Y ,

is defined to be the most-general judgement that holds when the following condi-
tions hold:

– For all s, s′ ∈ Store, C′ ∈ Command, α ∈ AAction with 〈C, s〉 α−→ 〈C′, s′〉,
for all x ∈ X, there exist p′p ∈ Store → ViewdomA, p′′p ∈ X × Y → Store →
ViewdomA such that

λ;A �
〈
pp(s) ∗ p(x)

〉
α
〈
p′p(s

′) ∗ p(x) ∨ ∃y ∈ Q(x). p′′p(x,y, s′) ∗ q(x,y)
〉

λ;A;Ω �

A

x ∈ X. 〈p′p|p(x)〉 C′

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉,
and for all y ∈ Q(x), λ;A;Ω(x,y) �

{
p′′p(x,y)

}
C′
{
qp(x,y)

}
.

– For all s, s′ ∈ Store, C′ ∈ Command, f , −→v with 〈C, s〉 fork(f,−→v )−−−−−−→ 〈C′, s′〉,
for all x ∈ X, there exist p′p ∈ Store → ViewdomA, p′′p ∈ X × Y →
Store → ViewdomA and pf ∈ Store → View such that for all sf ∈ Store
with sf (vars(γ(f))) = −→v ,

λ;A �
〈
pp(s) ∗ p(x)

〉
id
〈
p′p(s

′) ∗ pf (sf ) ∗ p(x) ∨ ∃y ∈ Q(x). p′′p(s′) ∗ pf (sf ) ∗ q(x,y)
〉

,

λ;A;Ω �

A

x ∈ X. 〈p′p|p(x)〉 C′

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉,
for all y ∈ Q(x), λ;A;Ω(x,y) �

{
p′′p(x,y)

}
C′
{
qp(x,y)

}
,

and λ; ∅; true �
{
pf
}

code(γ(f))
{

true
}

.

– If C = skip then, for all s ∈ Store, x ∈ X, there exists y ∈ Y such that

λ;A � 〈pp(s) | p(x)〉 id 〈false | −〉+ 〈qp(x,y, s) | q(x,y)〉.

– If C = return E;C′ then, for all s ∈ Store, x ∈ X, there exists y ∈ Y such
that

λ;A � 〈pp(s) | p(x)〉 id 〈false | −〉+ 〈Ω(x,y, EJEKs) | q(x,y)〉.

Here, we adopt the syntax λ;A;Ω �
{
p
}
C
{
q
}

as shorthand for λ;A;Ω �

A

x ∈
1. 〈p|true〉 C

E

y ∈ 1. 〈q|true〉.

The semantic judgement breaks down into four mutually-exclusive cases: two
progressing and two terminating. The first case covers normal progress, where
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the thread performs some atomic action (possibly id). The action may or may not
perform the linearisation point: the two new private views express the outcome
of each case. In the case where the linearisation point is not performed, the
continuation takes up this obligation. In the case where the linearisation point
is performed, the continuation loses responsibility for the public part.

The second case covers forking a new thread. This is just like the first case,
taking the action id, but with an additional obligation on the semantics of the
new thread: we must split the private part to give a precondition for both the
continuation and the newly-forked thread. Since it is not possible to explicitly
join on forked threads, we take their postcondition to be simply true. Note that
the forked thread does not participate in the atomic action of the original thread.

The third case covers ordinary termination. In this case, the atomic action
must be performed by the id action (since the thread is not going to perform
any further actions).

The fourth case covers termination by return. This is similar to the previous
case, except that the return postcondition, Ω, is used.

5.3 Soundness

We give some of the interesting proof steps in the soundness proof.

Lemma 1. If, for p ∈ Viewdom(A), q, ω ∈
∐
x∈X Q(x) → Viewdom(A), x ∈ X,

y ∈ Q(x)

λ; a : x ∈ X  Q(x),A;∃x, y. ω(x, y) ∗ a Z⇒ (x, y) �
{p ∗ a Z⇒ (x, y)}

C
{∃x, y. q(x, y) ∗ a Z⇒ (x, y)}

then
λ;A;ω(x, y) � {p} C {q(x, y)}

Lemma 2 (Make Atomic Rule). Suppose that

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Ta(G)∗

λ;A;Ω �

{
pp ∗ ∃x ∈ X. tλ

′

a (x) ∗ a Z⇒ �
}

C
{∃x ∈ X, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)}

where

A = aλ
′

: x ∈ X  Q(x),A′

Ω(ret) = ∃x ∈ X, y ∈ Q(x). ω(x, y, ret) ∗ a Z⇒ (x, y)

and a /∈ A′. Then

λ;A′;ω �

A

x ∈ X.
〈
pp

∣∣∣tλ′

a (x) ∗ [G]a

〉
C

E

y ∈ Q(x).
〈
qp(x, y)

∣∣∣tλ′

a (y) ∗ [G]a

〉
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Proof. Consider the case where C performs an action. Suppose that 〈C, s〉 α−→
〈C′, s′〉 where α ∈ AAction. By the premiss, there must be some p′p with

λ;A �
〈
pp(s) ∗ ∃x ∈ X. tλ

′

a (x) ∗ a Z⇒ �
〉
α
〈
p′p(s

′)
〉

(1)

λ;A;Ω �
{
p′p
}
C′
{
∃x ∈ X, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)

}
. (2)

Fix x ∈ X. Fix r ∈ ViewA′ . Fix ϕ ∈ pp(s) ∗ tλ
′

a (x) ∗ [G]a ∗ r.
Let p′p = λs.

{
ϕ ∈ AWorlddomA′

∣∣ ϕ • a Z⇒ � ∈ p′p(s)}.

Let p′′p(x, y) = λs.
{
ϕ ∈ AWorlddomA′

∣∣ ϕ • a Z⇒ (x, y) ∈ p′p(s)
}

.
Let r = r ∗ [G]a ∗ a Z⇒ −. (r is stable with respect to A since the additional

interference will be a : x ∈ X  Q(x), and the subset of r that is compatible
with [G]a must be closed under this.) Let ϕ = ϕ • a Z⇒ �. By construction,
bϕcλ = bϕcλ. We have that ϕ ∈ (pp(s) ∗ ∃x ∈ X. tλa(x) ∗ a Z⇒ �) ∗ r.

By (1) there exists ϕ′ with a) ϕ Gλ;A ϕ′, b) h′ ∈ bw′cλ, and c) ϕ′ ∈ p′p(s′)∗r.
From a) we can be sure that dϕ′ 6= ♦. Indeed, since dϕ = � and ρϕ = x, it

must be that either dϕ′ = � or dϕ = (x, y) for some y ∈ Q(x).
Let ϕ′ be such that ϕ ∈ ϕ′ ∗ a Z⇒ −. Now

ϕ′ ∈ p′p(s′) ∗ tλ
′

a (x) ∗ [G]a ∨ ∃y ∈ Q(x). p′′p(x, y, s′) ∗ tλ
′

a (y)

since ϕ′ ∈ p′p(s′) ∗ r (by c). By a) and definitions, we get ϕ Gλ;A ϕ′. By con-

struction bϕ′cλ = bϕ′cλ so h′ ∈ bϕ′cλ by b). Hence, we have established

λ;A �
〈
pp(s) ∗ tλ

′

a (x) ∗ [G]a

〉
α
〈
p′p(s

′) ∗ tλ
′

a (x) ∗ [G]a ∨ ∃y ∈ Q(x). p′′p(x, y, s′) ∗ tλ
′

a (y)
〉

.

We have that p′p ∗ ∃x ∈ X. xt (a)λ′ ∗ a Z⇒ � � p′p and is stable with respect to
A. From (2), by left consequence and the coinductive hypothesis, we have

λ;A;Ω �

A

x ∈ X. 〈p′p|tλ
′

a (x) ∗ [G]a〉 C′

E

y ∈ Y. 〈qp(x, y)|tλ
′

a (y) ∗ [G]a〉

Finally, from (2) and Lemma 1, we have, for all y ∈ Q(x)

λ;A′;ω �
{
p′′p(x, y)

}
C′
{
qp(x, y)

}
.

The remaining cases are simpler, or follow similar reasoning.

Lemma 3 (Update Region Rule). Suppose that a /∈ A and

λ;A;Ω �

A

x ∈ X.
〈
pp
∣∣I(tλa(x)) ∗ p(x)

〉
C

E

y ∈ Q(x), z ∈ Z.
〈
qp(x, y, z)

∣∣∣∣I(tλa(y)) ∗ q1(x, y, z) ∨
I(tλa(x)) ∗ q2(x, y, z)

〉
.

Then

λ+ 1;A′;Ω �

A

x ∈ X.
〈
pp
∣∣tλa(x) ∗ p(x) ∗ a Z⇒ �

〉
C

E

y ∈ Q(x), z ∈ Z.
〈
qp(x, y, z)

∣∣∣∣tλa(y) ∗ q1(x, y, z) ∗ a Z⇒ (x, y) ∨
tλa(x) ∗ q2(x, y, z) ∗ a Z⇒ �

〉
,

where A′ = (a : x ∈ X  Q(x),A).
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Proof. Suppose that 〈C, s〉 α−→ 〈C′, s′〉 with α ∈ AAction.
Fix x ∈ X. From our assumption, there are p′p and p′′p with

λ;A �

〈
pp(s) ∗ I(tλa(x)) ∗ p(x)

〉
α〈

p′p(s
′) ∗ I(tλa(x)) ∗ p(x) ∨

∃y ∈ Q(x), z ∈ Z. p′′p(x, y, z, s′) ∗(
I(tλa(y)) ∗ q1(x, y, z) ∨
I(tλa(x)) ∗ q2(x, y, z)

)〉 (3)

λ;A;Ω �

〈
p′p
∣∣I(tλa(x)) ∗ p(x)

〉
C′

E

y ∈ Q(x), z ∈ Z.
〈
qp(x, y, z)

∣∣∣∣I(tλa(y)) ∗ q1(x, y, z) ∨
I(tλa(x)) ∗ q2(x, y, z)

〉 (4)

∀y ∈ Q(x), z ∈ Z. λ;A;Ω(x, y, z) �
{
p′′p(x, y, z)

}
C′
{
qp(x, y, z)

}
(5)

We will show that these p′p and p′′p(x, y, z) = p′′p(x, y, z) ∗ a Z⇒ (x, y) work to
establish our goal.

Fix r ∈ ViewA′ , ϕ ∈ pp(s) ∗ tλa(x) ∗ p(x) ∗ a Z⇒ � ∗ r, h ∈ bϕcλ+1, h′ ∈ JαK(h).
Let r ∈ ViewA be such that

r = removedonea


r ∗ �

a′ ∈ RId
a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))


.

That is, we open all regions at level λ (except a) with their states as given by ϕ
and remove the atomicity tracking for a.

There will be some ϕ ∈ pp ∗ I(tλa(x)) ∗ p(x) ∗ r with rϕ = rϕ and ρϕ = ρϕ,
and bϕcλ = bϕcλ+1, and so h ∈ bϕcλ. By (3), there is some ϕ′ with ϕ Gλ;A ϕ′,
h′ ∈ bϕ′cλ and

ϕ′ ∈

p′p(s′) ∗ I(tλa(x)) ∗ p(x) ∨
∃y ∈ Q(x), z ∈ Z. p′′p(x, y, z, s′) ∗(

I(tλa(y)) ∗ q1(x, y, z) ∨
I(tλa(x)) ∗ q2(x, y, z)

) ∗ r
We have the following cases for ϕ′:

– ϕ′ ∈ p′p(s′′) ∗ I(tλa(x)) ∗ p(x) ∗ r. In this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(x)) ∗ �
a′ ∈ RId
a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ p′p(s′) ∗ p(x) ∗ r. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′ [a 7→ �]).



TaDA: A Logic for Time and Data Abstraction 31

Hence, by the guarantee, ϕ′ ∈ p′p(s′′) ∗ tλa(x) ∗ p(x) ∗ r, and by construction
bϕ′cλ+1 = bϕ′′cλ. Also ϕ Gλ+1;A′ ϕ′.

– ϕ′ ∈ p′′p(x, y, z, s′) ∗ I(tλa(y)) ∗ q1(x, y, z) ∗ r for some y ∈ Q(x) and z ∈ Z. In

this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(y)) ∗ �
a′ ∈ RId
a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ p′′p(x, y, z, s′) ∗ q1(x, y, z) ∗ r. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ [a 7→ y], dϕ′′ [a 7→ (x, y)]).

Hence, by the guarantee, ϕ′ ∈ p′′p(x, y, z, s′) ∗ tλa(y) ∗ q1(x, y, z) ∗ r, and by
construction bϕ′cλ+1 = bϕ′′cλ. Also ϕ Gλ+1;A′ ϕ′.

– ϕ′ ∈ p′′p(x, y, z, s′) ∗ I(tλa(x)) ∗ q2(x, y, z) ∗ r for some y ∈ Q(x) and z ∈ Z. In

this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(x)) ∗ �
a′ ∈ RId
a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ p′′p(x, y, z, s′) ∗ q2(x, y, z) ∗ r. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′ [a 7→ �]).

Hence, by the guarantee, ϕ′ ∈ p′′p(x, y, z, s′) ∗ tλa(x) ∗ q2(x, y, z) ∗ r, and by
construction bϕ′cλ+1 = bϕ′′cλ. Also ϕ Gλ+1;A′ ϕ′.

In each case we have ϕ′ which satisfies ϕ Gλ+1;A ϕ
′, h′ ∈ bϕ′cλ+1 and

ϕ′ ∈ p′p(s′) ∗ tλa(x) ∗ p(x) ∗ a Z⇒ � ∨
∃y ∈ Q(x), z ∈ Z. p′′p(x, y, z, s′) ∗(

tλa(y) ∗ q1(x, y, z) ∗ a Z⇒ (x, y) ∨
tλa(x) ∗ q2(x, y, z) ∗ a Z⇒ �

)
∗ r.

So we have established that

λ+1;A′ �

〈
pp(s) ∗ tλa(x) ∗ p(x) ∗ a Z⇒ �

〉
α〈

p′p(s
′) ∗ tλa(x) ∗ p(x) ∗ a Z⇒ � ∨

∃y ∈ Q(x), z ∈ Z. p′′p(x, y, z, s′) ∗(
tλa(y) ∗ q1(x, y, z) ∗ a Z⇒ (x, y) ∨

tλa(x) ∗ q2(x, y, z) ∗ a Z⇒ �

)〉.

By (4), it follows from the coinductive hypothesis that

λ+ 1;A′;Ω �

A

x ∈ X.
〈
p′p
∣∣tλa(x) ∗ p(x) ∗ a Z⇒ �

〉
C

E

y ∈ Q(x), z ∈ Z.
〈
qp(x, y, z)

∣∣∣∣tλa(y) ∗ q1(x, y, z) ∗ a Z⇒ (x, y) ∨
tλa(x) ∗ q2(x, y, z) ∗ a Z⇒ �

〉
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Fix y ∈ Q(x) and z ∈ Z. Because p′′p(x, y, z) = p′′p(x, y, z) ∗ a Z⇒ (x, y), we
can extend the atomicity context and have

λ+ 1;A′;Ω(x, y, z) �
{
p′′p(x, y, z)

}
C′
{
qp(x, y, z)

}
6 Related Work

TaDA inherits from a family of logics deriving from concurrent separation lo-
gic [14]: RGSep [20], Deny-Guarantee [6], CAP [5], Higher-Order CAP (HO-
CAP) [17] and Impredicative CAP (iCAP) [16]. In particular, it makes use of
dynamic shared regions with capability resources (called guards in TaDA) that
determine how the regions may be updated. Following iCAP, TaDA eschews the
use of boxed assertions to describe the state of shared regions and instead repre-
sents regions by abstract states. The protocol for updating the region is specified
as a transition system on these abstract states, labelled by guards. This use of
transition systems to describe protocols derives from previous work by Dreyer
et al. [8], and also appears in Turon et al. [19] as “local life stories”.

By treating the abstract state-space of a region as a separation algebra, it is
possible to localise updates on it, as in the MCAS example (§2.2). Such locality
is in the spirit of local life stories [19], and can be seen as an instance of Ley-Wild
and Nanevski’s “subjective auxiliary state” [13].

While HOCAP and iCAP do not support abstract atomic specifications, they
support an approach to atomicity introduced by Jacobs and Piessens [12] that
achieves similar effects. In their work, operations may be parametrised by an
update to auxiliary state that is performed when the abstract atomic operation
appears to take effect. This update is performed atomically by the implemen-
tation, and can therefore involve shared regions. This approach is inherently
higher-order, which has the disadvantage of leading to complex specifications.
TaDA takes a first-order approach, leading to simpler specifications.

There has been extensive work understanding and generalising linearisabil-
ity, especially in light of work on separation logic. Vafeiadis [20] has combined
the ownership given by his RGSep reasoning with linearisability. Gotsman and
Yang [10] have generalised linearisability to include ownership transfer of mem-
ory between a client and a module, which is also supported by our approach.
Filipovic et al. [9] have demonstrated that linearisability can be viewed as a
particular proof technique for contextual refinement. Turon et al. [18] have in-
troduced CaReSL, a logic that combines contextual refinement and Hoare-style
reasoning to prove higher-order concurrent programs. Like linearisability, con-
textual refinement requires a whole-module approach.

7 Conclusions

We have introduced a program logic, TaDA, which includes novel atomic triples
for specifying abstract atomicity, as well as separation-style Hoare triples for
specifying abstract disjointness. We have specified and verified several example
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modules: an atomic lock module, which cannot be fully specified using linearis-
ability; an atomic MCAS module implemented using our lock module, a classic
linearisability example which cannot be done using concurrency abstract pred-
icates; and a double-ended queue module implemented using MCAS. With the
combination of abstract atomicity and abstract disjointness that TaDA provides,
we can specify and verify modules with atomic and non-atomic operations, po-
sisbly at different levels of abstraction. Moreover, we can easily extend modules
with new operations, and build new modules on top of existing ones.

7.1 Future Work

Helping. In some concurrent modules, one thread’s abstract atomic action may
actually be effected by another thread — a phenomenon termed helping. As
presented, TaDA does not support helping, since each abstract atomic operation
of a thread can be traced down to a concrete atomic action of that thread at
which it takes effect. By transforming the atomic tracking component into a
transferrable resource, it should be possible to support helping. However, this
will require a different semantic model.

Higher-order. iCAP [16] makes use of impredicative protocols for shared regions
— protocols that can reference arbitary protocols. This gives it the expressive
power to handle higher-order programs and reentrancy. It would be interesting to
combine TaDA with iCAP, which may be possible by proving the rules of TaDA
in the metatheory of iCAP. Iterators on concurrent collections, which can have
subtle specifications, could benefit from the expressive power of such a logic.

Weak Memory. Burkhardt et al. [1] have extended the concept of linearisability
to the total store order (TSO) memory model. TaDA already has some potential
to specify weak behaviours. For instance, the following three specifications for a
read operation are increasingly weak:

`

A

v.
〈
x 7→ v

〉
y := [x]

〈
x 7→ v ∧ y = v

〉
`
〈
x 7→ v

〉
y := [x]

〈
x 7→ v ∧ y = v

〉
`
{
x 7→ v

}
y := [x]

{
x 7→ v ∧ y = v

}
The first of these specifications gives the usual atomic semantics; the second
prohibits concurrent updates; the third prohibits any concurrent access. An in-
teresting research direction would be to investigate extensions of TaDA that can
specify and verify programs that make use of weak memory models such as TSO.
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A Lock Proofs

A.1 makeLock

{
emp

}
v := alloc(1);{
v 7→ −

}
[v] := 0;{
v 7→ 0

}{
Locka(v, 0) ∗ [G]a

}{
U(v)

}
return v;{

U(ret)
}

A.2 unlock

〈
L(x)

〉

ab
st

ra
ct

;
q
u

a
n
ti

fy
a

〈
Locka(x, 1) ∗ [G]a

〉

m
ak

e
at

om
ic

a : 1 0 `{
Locka(x, 1) ∗ a Z⇒ �

}

u
p

d
at

e
re

gi
on 〈

x 7→ 1
〉

[x] := 0;〈
x 7→ 0

〉
{
a Z⇒ (1, 0)

}〈
Locka(x, 0) ∗ [G]a

〉〈
U(x)

〉
B MCAS Proofs

B.1 makeMCL

{
emp

}
v := makeLock();{

U(x)
}{

∃h.MCASm(v, hv • h)
}{

MCL(v)
}

return v;{
MCL(ret)

}
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B.2 makeMCP

A

v.

ab
st

ra
ct

;
q
u

a
n
ti

fy
m

{
x 7→ v ∗ ∃h.MCASm(l, h)

}
o
p

en
re

g
io

n

A

h.〈
x 7→ v ∗

 U(l) ∗ h ∗ [Unlocked]m
∨ L(l) ∗ ∃h1, h2. h = (h1 • h2) ∧ h1

∗ [Locked(h2)]m

 ∗ [Owned(dom(h))]m

〉
lock(l);〈
x 7→ v. L(l) ∗ h ∗ [Locked(emp)]m ∗ [Owned(dom(h))]m ∗ [Key(emp)]m

〉{
x 7→ v ∗ ∃h.MCASm(l, x 7→ v • h) ∗ [Key(emp)]m

}

u
p

d
at

e
re

gi
on

A

h.〈
x 7→ v. L(l) ∗ h ∗ [Locked(emp)]m ∗ [Owned(dom(h))]m ∗ [Key(emp)]m

〉
unlock(l); // put the heap cell in the shared region〈

U(l) ∗ h ∗ x 7→ v ∗ [Unlocked]m ∗ [Owned(dom(h • x 7→ v))]m ∗
[Own(x)]m

〉
{
∃h1, h2.MCASm(l, x 7→ v • h1) ∗ [Own(x)]m

}{
MCP(l, x, v) ∗MCL(l)

}

B.3 unmakeMCP

{
MCP(l, x, v)

}

ab
st

ra
ct

;
q
u

an
ti

fy
m

{
∃h.MCASm(l, x 7→ v • h) ∗ [Own(x)]m

}

op
en

re
g
io

n

A

h.〈 U(l) ∗ h ∗ [Unlocked]m
∨ L(l) ∗ ∃h1, h2. h = (h1 • h2) ∧ h1

∗ [Locked(h2)]m

 ∗ [Owned(dom(h))]m ∗ [Own(x)]m

〉
lock(l); // remove from the shared region the heap cell〈
∃h1. L(l) ∗ h1 ∗ [Locked(x 7→ v)]m ∧ h = (h1 • x 7→ v) ∗
[Owned(dom(h))]m ∗ [Own(x)]m ∗ [Key(x 7→ v)]m ∗ x 7→ v

〉
{
∃h.MCASm(l, x 7→ v • h) ∗ [Own(x)]m ∗ [Key(x 7→ v)]m ∗ x 7→ v

}

u
p

d
at

e
re

gi
on

A

h.〈
∃h1. L(l) ∗ h1 ∗ [Locked(x 7→ v)]m ∧ h = (h1 • x 7→ v) ∗
[Owned(dom(h))]m ∗ [Own(x)]m ∗ [Key(x 7→ v)]m ∗ x 7→ v

〉
unlock(l); // put the guard back in the shared region〈
∃h1.U(l) ∗ h1 ∗ [Unlocked]m ∧ h = (h1 • x 7→ v) ∗
[Owned(dom(h1))]m ∗ x 7→ v

〉
{
x 7→ v

}{
x 7→ v

}
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B.4 cas

Let hv = x 7→ v and hv2 = x 7→ v2.

A

v.〈
MCP(l, x, v)

〉
ab

st
ra

ct
;

q
u

an
ti

fy
m

〈
∃h.MCASm(l, hv • h) ∗ [Own(x)]m

〉
m

ak
e

at
om

ic

m : hv • h if v = v1 then hv2 • h else hv • h `{
∃h.MCASm(l, hv • h) ∗m Z⇒ �

}
op

en
re

gi
on

A

h.〈(
U(l) ∗ h ∗ [Unlocked]m ∨ L(l) ∗

∃h1, h2. h = (h1 • h2) ∧ h1 ∗ [Locked(h2)]m

)
∗ [Owned(dom(h))]m ∗m Z⇒ �

〉
lock(l); // remove from the shared region the heap cell〈
∃h1. L(l) ∗ h1 ∗ [Locked(hv)]m ∧ h = (h1 • hv) ∗
[Owned(dom(h))]m ∗m Z⇒ � ∗ [Key(hv)]m ∗ hv

〉
{
∃h.MCASm(l, hv • h) ∗m Z⇒ � ∗ [Key(hv)]m ∗ hv

}
v := [x]; // the environment cannot access the cell{
∃h.MCASm(l, hv • h) ∗m Z⇒ � ∗ [Key(hv)]m ∗ hv ∧ v = v

}
if (v = v1) { // perform conditional update on the heap cell

[x] := v2; r := 1;
} else { r := 0; }{
∃h.MCASm(l, hv • h) ∗m Z⇒ � ∗ [Key(hv)]m ∧ v = v ∧ ∗
if v = v1 then r = 1 ∧ hv2 else r = 0 ∧ hv

}

u
p

d
at

e
re

g
io

n

A

h.〈
∃h1. h = (h1 • hv) ∧ L(l) ∗ [Owned(dom(h))]m ∗ [M(hv)]m ∗ [N(hv)]m ∗ h ∗
if v = v1 then r = 1 ∧ hv2 else r = 0 ∧ hv

〉
unlock(l); // put the heap cell in the shared region and update

// its abstract state if the heap cell was modified〈
L(l) ∗ [Owned(dom(h))]m ∗ [Unlocked]m ∗ h ∗
if v = v1 then h[x 7→ v2] else h

〉
{
∃h. if v = v1 then m Z⇒ (hv • h, hv2 • h) ∗ r = 1 else m Z⇒ (hv • h, hv • h) ∗ r = 0

}
return r;〈

(if v = v1 then ret = 1 ∧ ∃h.MCASm(l, hv2 • h) else ret = 0 ∧ ∃h.MCASm(l, hv • h)) ∗
[Own(x)]m

〉
〈
if v = v1 then ret = 1 ∧MCP(l, x, v2) else ret = 0 ∧MCP(l, x, v)

〉
C Counter

The problem of specifying concurrent modules is a subtle one. Consider the
following implementation of a counter:

function read(x) {
r := [x];
return r;

}

function incr(x) {
do {
r := [x];
b := CAS(x, r, r + 1);
} while (b = 0);

}

function wkincr(x) {
r := [x];
[x] := r + 1;

}
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The value of the counter is stored at address x. The read operation atomically
reads the value and then returns it. The incr operation reads the value and
attempts to atomically substitute it for a new value, one greater than the old
one, with a compare-and-swap (CAS) operation. The CAS can fail due to another
thread updating the counter since its value was read. The operation is therefore
retried until it succeeds. The wkincr operation atomically reads the value of
the counter, then atomically writes the successor of the value it read. Since the
wkincr operation does not protect against concurrent updates, it can only be
used to increment the counter reliably in a context where no other concurrent
updates can occur.

We give the following specification:

`

A

n ∈ N.
〈
C(x, n)

〉
v := read(x)

〈
C(x, n) ∧ v = n

〉
`

A

n ∈ N.
〈
C(x, n)

〉
incr(x)

〈
C(x, n+ 1)

〉
`
〈
C(x, n)

〉
wkincr(x)

〈
C(x, n+ 1)

〉
Abstract Predicate Interpretation:

C(x, n) , ∃c.Counterc(x, n) ∗ [G]c

Transition system:

G : ∀n,m ∈ N. n m

Interpretation:

I(Counterc(x, n)) , x 7→ n

C.1 read

A

n ∈ N.〈
C(x, n)

〉

ab
st

ra
ct

;
q
u

an
ti

fy
c

〈
Counterc(x, n) ∗ [G]c

〉

m
ak

e
at

om
ic

c : n ∈ N n `{
∃n ∈ N.Counterc(x, n) ∗ c Z⇒ �

}

u
p

d
at

e
re

gi
on A

n ∈ N.〈
x 7→ n

〉
r := [x];〈
x 7→ n ∧ r = n

〉
{
c Z⇒ (r, r + 1)

}
return r;〈

Counterc(x, n) ∗ [G]c ∧ ret = n
〉〈

C(x, n) ∧ ret = n
〉
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C.2 incr

A

n ∈ N.〈
C(x, n)

〉
a
b

st
ra

ct
;

q
u

an
ti

fy
c

〈
Counterc(x, n) ∗ [G]c

〉
m

a
ke

at
om

ic

c : n ∈ N n+ 1 `{
∃n ∈ N.Counterc(x, n) ∗ c Z⇒ �

}
do {
r := [x];{
∃n,m ∈ N.Counterc(x, n) ∗ c Z⇒ � ∧ r = m

}
u

p
d

a
te

re
g
io

n A

n ∈ N.〈
x 7→ n

〉
b := CAS(x, r, r + 1);〈

(x 7→ n ∧ r 6= n ∧ b = 0) ∨
(x 7→ r + 1 ∧ r = n ∧ b = 1)

〉
{
∃n ∈ N.Counterc(x, n) ∗ c Z⇒ � ∧ b = 0) ∨
(c Z⇒ (r, r + 1) ∧ b = 1)

}
} while (b = 0);{
c Z⇒ (r, r + 1)

}〈
Counterc(x, n+ 1) ∗ [G]c

〉〈
C(x, n+ 1)

〉
C.3 wkincr 〈

C(x, n)
〉

ab
st

ra
ct

;
q
u

an
ti

fy
c

〈
Counterc(x, n) ∗ [G]c

〉

m
ak

e
at

o
m

ic

c : n n+ 1 `{
∃n.Counterc(x, n) ∗ c Z⇒ �

}
r := [x];{

Counterc(x, r) ∗ c Z⇒ �
}

u
p

d
at

e
re

gi
on 〈

x 7→ r
〉

[x] := r + 1;〈
x 7→ r + 1

〉
{
c Z⇒ (r, r + 1)

}〈
Counterc(x, n+ 1) ∗ [G]c

〉〈
C(x, n+ 1)

〉
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In the following, let hv,w = x 7→ v • y 7→ w and hv2,w2 = x 7→ v2 • y 7→ w2.

A

v, w.〈
MCP(l, x, v) ∗MCP(l, y, w)

〉

a
b
st

ra
ct

;
q
u
a
n
ti

fy
m

〈
∃h.MCASm(l, hv,w • h) ∗ [Own(x)]m ∗ [Own(y)]m

〉

m
a
k
e

a
to

m
ic

m : hv,w • h if v = v1 ∧ w = w1 then hv2,w2 • h else hv,w • h `{
∃h, v, w.MCASm(l, hv,w • h) ∗m Z⇒ �

}

o
p

en
re

g
io

n

A

h.〈 U(l) ∗ h ∗ [Unlocked]m ∨
L(l) ∗ ∃h1, h2. h = (h1 • h2) ∧ h1

∗ [Locked(h2)]m

 ∗ [Owned(dom(h))]m ∗m Z⇒ �

〉
lock(l); // remove from the shared region the two heap cells〈
∃h1. L(l) ∗ h1 ∗ [Locked(hv,w)]m ∧ h = (h1 • hv,w) ∗
[Owned(dom(h))]m ∗m Z⇒ � ∗ [Key(hv,w)]m ∗ hv,w

〉
{
∃h.MCASm(l, hv,w • h) ∗m Z⇒ � ∗ [Key(hv,w)]m ∗ hv,w

}
v := [x]; w := [y]; // the environment cannot access either cell{
∃h.MCASm(l, hv,w • h) ∗m Z⇒ � ∗ [Key(hv,w)]m ∗ hv,w ∧ v = v ∧ w = w

}
if (v = v1 and w = w1) { // perform conditional update on the heap cells

[x] := v2; [y] := w2; r := 1;
} else { r := 0; }{
∃h.MCASm(l, hv,w • h) ∗m Z⇒ � ∗ [Key(hv,w)]m ∧ v = v ∧ w = w ∗
if v = v1 ∧ w = w1 then r = 1 ∧ hv2,w2 else r = 0 ∧ hv,w

}

u
p

d
a
te

re
g
io

n

A
h.〈∃h1. h = (h1 • hv,w) ∧ L(l) ∗ [Owned(dom(h))]m ∗
[Locked(hv,w)]m ∗ [Key(hv,w)]m ∗ h1∗
if v = v1 ∧ w = w1 then r = 1 ∧ hv2,w2 else r = 0 ∧ hv,w

〉
unlock(l); // put the heap cells in the shared region and update

// its abstract state if the heap cells were modified〈
U(l) ∗ [Owned(dom(h))]m ∗ [Unlocked]m ∗
if v = v1 ∧ w = w1 then h[x 7→ v2, y 7→ w2] else h

〉
{
∃h. if v = v1 ∧ w = w1 then m Z⇒ (hv,w • h, hv2,w2 • h) ∗ r = 1

else m Z⇒ (hv,w • h, hv,w • h) ∗ r = 0

}
return r;〈

(if v = v1 ∧ w = w1 then ret = 1 ∧ ∃h.MCASm(l, hv2,w2 • h)
else ret = 0 ∧ ∃h.MCASm(l, hv,w • h)) ∗ [Own(x)]m ∗ [Own(y)]m

〉
〈
if v = v1 ∧ w = w1 then ret = 1 ∧MCP(l, x, v2) ∗MCP(l, y, w2)

else ret = 0 ∧MCP(l, x, v) ∗MCP(l, y, w)

〉
Fig. 6. Proof of the dcas implementation.
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Frame rule
λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q(x, y)
〉

λ;A `

A

x ∈ X.
〈
r′ ∗ pp

∣∣ r(x) ∗ p(x)
〉
C

E

y ∈ Y.
〈
r′ ∗ qp(x, y)

∣∣ r(x) ∗ q(x, y)
〉

Substitution rule
λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q(x, y)
〉

f : X ′ → X

λ;A `

A

x′ ∈ X ′.
〈
pp
∣∣ p(f(x′))

〉
C

E

y ∈ Y.
〈
qp(f(x′), y)

∣∣ q(f(x′), y)
〉

Atomicity weakening rule
λ;A `

A

x ∈ X.
〈
pp
∣∣ p′ ∗ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q′(x, y) ∗ q(x, y)
〉

λ;A `

A

x ∈ X.
〈
pp ∗ p′

∣∣ p(x)
〉
C

E

y ∈ Y.
〈
qp(x, y) ∗ q′(x, y)

∣∣ q(x, y)
〉

Open region rule
λ;A `

A

x ∈ X.
〈
pp
∣∣ I(tλa(x)) ∗ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ I(tλa(x)) ∗ q(x, y)
〉

λ+ 1;A `

A

x ∈ X.
〈
pp
∣∣ tλa(x) ∗ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ tλa(x) ∗ q(x, y)
〉

Use atomic rule
a /∈ A ∀x ∈ X. (x, f(x)) ∈ Tt(G)∗

λ;A `

A

x∈X.
〈
pp
∣∣ I(tλa(x)) ∗ p(x) ∗ [G]a

〉
C

E

y∈Y.
〈
qp(x, y)

∣∣ I(tλa(f(x))) ∗ q(x, y)
〉

λ+ 1;A `

A

x ∈ X.
〈
pp
∣∣ tλa(x) ∗ p(x) ∗ [G]a

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ tλa(f(x)) ∗ q(x, y)
〉

Update region rule

λ;A `

A

x ∈ X.
〈
pp

∣∣∣∣ I(tλa(x)) ∗ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣∣∣ ∃z ∈ Q(x). I(tλa(z)) ∗ q1(x, y)

∨ I(tλa(x)) ∗ q2(x, y)

〉

λ+1; a : x∈X  Q(x),A `

A

x ∈ X.
〈
pp
∣∣ tλa(x) ∗ p(x) ∗ a Z⇒ �

〉
C

E

y∈Y.
〈
qp(x, y)

∣∣∣∣∃z ∈ Q(x). tλa(z) ∗ q1(x, y) ∗ a Z⇒ (x, z)

∨ tλa(x) ∗ q2(x, y) ∗ a Z⇒ �

〉
Make atomic rule

a /∈ A {(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

λ′; a : x ∈ X  Q(x),A `

{
pp ∗ ∃x ∈ X. tλa(x) ∗ a Z⇒ �

}
C

{∃x ∈ X, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)}

λ′;A `

A

x ∈ X.
〈
pp
∣∣ tλa(x) ∗ [G]a

〉
C

E

y ∈ Q(x).
〈
qp(x, y)

∣∣ tλa(y) ∗ [G]a
〉

Fig. 7. Selected proof rules of TaDA.
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Statement rules

λ;A `
{
P
}
C1

{
R
}

λ;A `
{
R
}
C2

{
Q
}

λ;A `
{
P
}
C1; C2

{
Q
} λ;A `

{
P ∧ B

}
C1

{
Q
}

λ;A `
{
P ∧ ¬B

}
C2

{
Q
}

λ;A `
{
P
}
if (B) C1 else C2

{
Q
}

λ;A `
{
P ∧ B

}
C
{
P
}

λ;A `
{
P
}
while (B) C

{
P ∧ ¬B

} λ;A `
{
P
}
C
{
P
}

λ;A `
{
P
}
do C while (B)

{
P ∧ ¬B

}
`
{
x = n

}
x := B

{
x = B[n/x]

}
`

A

n.
〈
E 7→ n ∧ x = m

〉
x := [E]

〈
E[m/x] 7→ n ∧ x = n

〉
`

A

n.
〈
E1 7→ n

〉
[E1] := E2

〈
E1 7→ E2

〉
`
{
emp

}
x := alloc(E)

{
∃y. x = y ∧ �

0≤i≤E−1
(y + i) 7→ −

}

`

A

n.

〈
E1 7→ n

〉
x := CAS(E1,E2,E3)

〈
(n = E2 ∧ x = 1 ∧ E1 7→ E3) ∨

(n 6= E2 ∧ x = 0 ∧ E1 7→ n)

〉

Frame rules

λ;A `

A

x ∈ X.
〈
p(x)

〉
C
〈
q(x)

〉
∀x ∈ X.A � r(x) stable

λ;A `
A

x ∈ X.
〈
r(x) ∗ p(x)

〉
C
〈
r(x) ∗ q(x)

〉
Substitution rule

λ;A `

A

x ∈ X.
〈
p(x)

〉
C
〈
q(x)

〉
f : Y → X

λ;A `

A

y ∈ Y.
〈
p(f(y))

〉
C
〈
q(f(y))

〉
Weakening rules

λ1 ≤ λ2 λ1;A `

A

x ∈ X.
〈
p(x)

〉
C
〈
q(x)

〉
λ2;A `

A

x ∈ X.
〈
p(x)

〉
C
〈
q(x)

〉 λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C
〈
qp(x)

∣∣ q(x)
〉

∀x ∈ X.λ;A `
{
pp ∗ p(x)

}
C
{
qp(x) ∗ q(x)

}

Fig. 8. Proof rules of TaDA — Part 1.
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Primitive atomic rule
∀x ∈ X.λ;A `

{
p(x)

}
C
{
q(x)

}
λ;A `

A

x ∈ X.
〈
p(x)

〉
〈C〉

〈
q(x)

〉
Consequence rule

∀x ∈ X. pp =⇒ p′p ∀x ∈ X, y ∈ Y. q′p(x, y) =⇒ qp(x, y)
∀x ∈ X, y ∈ Y. q′(x, y) =⇒ q(x, y)

λ;A `

A

x ∈ X.
〈
p′p
∣∣ p(x)

〉
C

E

y ∈ Y.
〈
q′p(x, y)

∣∣ q′(x, y)
〉

λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q(x, y)
〉

Substitution rule 2
λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y (x).
〈
qp(x, y)

∣∣ q(x, y)
〉

f : X ′ → X

λ;A `

A

x′ ∈ X ′.
〈
pp
∣∣ p(f(x′))

〉
C

E

y ∈ Y (f(x′)).
〈
qp(f(x′), y)

∣∣ q(f(x′), y)
〉

Substitution rule 3
λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y′ ∈ Y ′.
〈
qp(x, f(y′))

∣∣ q(x, f(y′))
〉

f : Y ′ → Y

λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q(x, y)
〉

Substitution rule 3a
λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y′ ∈ Y ′(x).
〈
qp(x, fx(y′))

∣∣ q(x, fx(y′))
〉

fx : Y ′(x)→ Y (x)

λ;A `

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y (x).
〈
qp(x, y)

∣∣ q(x, y)
〉

Existencial rule
∀x ∈ X.λ;A `

{
p(x)

}
C
{
q
}

λ;A `
{
∃x ∈ X.p(x)

}
C
{
q
}

Fig. 9. Proof rules of TaDA — Part 2.
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Fig. 10. Examples of a deque before and after performing popLeft, which uses 3cas

to updated pointers c, d and e.
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A

vs.〈
Deque(d, vs)

〉
a
b
st

ra
ct

;
q
u
a
n
ti

fy
a
,
L

,
n
s,
d
s

〈
Dequea(d, L, ns, ds) ∗ [G]a ∧ vs = snds(ns)

〉
m

a
k
e

a
to

m
ic

a : (ns, ds) if ns = [] then (ns, ds) else (ns′, (n, v) : ds) ∧ ns = (n, v) : ns′ `{
∃ns, ds.Dequea(d, L, ns, ds) ∗ a Z⇒ �

}
L := [d.mcl];
while (true) {{
∃ns, ds.Dequea(d, L, ns, ds) ∗ a Z⇒ � ∧ L = L

}
lh := read(L, l.left); lhR := read(L, lh.right); lhL := read(L, lh.left);
∃ns, ds.Dequea(d, L, ns, ds) ∗ a Z⇒ � ∧ L = L ∧
if lh = lhL then (lh,−) ∈ ds

else {(lh,−), (lhL,−), (lhR,−)} ∈ ns++ ds


if (lhL = lh) { // left hat seems dead{
∃ns, ds.Dequea(d, L, ns, ds) ∗ a Z⇒ � ∧ L = L ∧ (lhL,−) ∈ ds

}

u
p

d
a
te

re
g
io

n A

ns, ds.〈
deque(d, L, ns, ds) ∧ L = L ∧ (lhL,−) ∈ ds

〉
lh2 := read(L, d.left);〈
deque(d, L, ns, ds) ∧ L = L ∧
(lh2 = lhL→ ns = [])

〉
{
∃ns, ds.Dequea(d, L, ns, ds) ∧ L = L ∧
if lh2 = lhL then a Z⇒ ([], ds), ([], ds) else a Z⇒ �

}
if (lh2 = lhL) { // left hat confirmed dead
return 0;{
∃ds. ret = 0 ∗ a Z⇒ ([], ds), ([], ds)

}
} // left hat not dead — try again
} else {{
∃ns, ds.Dequea(d, L, ns, ds) ∗ a Z⇒ � ∧ L = L ∧
{(lh,−), (lhL,−), (lhR,−)} ∈ ns++ ds

}

u
p

d
a
te

re
g
io

n

A

ns, ds.〈
deque(d, L, ns, ds) ∧ L = L ∧
{(lh,−), (lhL,−), (lhR,−)} ∈ ns++ ds

〉
b := 3cas(L, d.left, lh.right, lh.left, lh, lhR, lhL, lhR, lh, lh);〈
∃ns′, v. if b = 1 then

(
deque(d, L, ns′, (lh, v) : ds) ∧

L = L ∧ (lh, v) ∈ ds ∧ ns = (lh, v) : ns′

)
else deque(d, L, ns, ds) ∧ L = L

〉
∃ns, ds, v. if b = 1 then

(
a Z⇒ ((lh, v) : ns, ds), (ns, (lh, v) : ds)

∧ L = L ∧ (lh, v) ∈ ds

)
else Dequea(d, L, ns, ds) ∗ a Z⇒ � ∧ L = L


if (b = 1) {
v := [lh.value]; return v;{
∃ns, ds. ret = v ∗ a Z⇒ ((lh, v) : ns, ds), (ns, (lh, v) : ds)

}
} } }〈 if vs = [] then ret = 0 ∗Dequea(d, L, ns, ds) ∗ [G]a

else

(
∃ns′, v. ns = (n, v) : ns′ ∧ ret = v ∗

Dequea(d, L, ns′, (n, v) : ds) ∗ [G]a ∧ vs
′ = snds(ns′)

)〉
〈
if vs = [] then ret = 0 ∗ Deque(d, vs)

else ∃vs′, v. vs = v : vs′ ∧ ret = v ∗ Deque(d, vs′)

〉
Fig. 11. Proof of the popLeft implementation.
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〈s,C1〉
α−→ 〈s′,C′1〉

〈s,C1;C2〉
α−→ 〈s′,C′1;C2〉 〈s, skip;C〉 id−→ 〈s,C〉

BJBKs

〈s, if (B) C1 else C2〉
id−→ 〈s,C1〉

¬BJBKs

〈s, if (B) C1 else C2〉
id−→ 〈s,C2〉

BJBKs

〈s, while (B) C〉 id−→ 〈s,C; while (B) C〉

¬BJBKs

〈s, while (B) C〉 id−→ 〈s, skip〉

EJ
−→
E Ks = s′(vars(γ(f)))

〈s, x := f(
−→
E )〉 id−→ 〈s, x := 〈s′, code(γ(f))〉〉

〈s, do C while (B)〉 id−→ 〈s,C; while (B) C〉
τ

α−→ τ ′

〈s, x := τ〉 α−→ 〈s, x := τ ′〉

〈s, x := 〈s′, return E;C〉〉 id−→ 〈s[x 7→ EJEKs′ ], skip〉

〈s, x := E〉 id−→ 〈s[x 7→ EJEKs], skip〉

〈s, x := [E]]〉 read(EJEKs,v)−−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, [E1] := E2〉
write(EJE1Ks,EJE2Ks)−−−−−−−−−−−−−→ 〈s, skip〉

〈s, x := CAS(E1,E2,E3)〉 cas(EJE1Ks,EJE2Ks,EJE3Ks,v)−−−−−−−−−−−−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, x := alloc(E)〉 alloc(EJEKs,v)−−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, fork f(
−→
E )〉 spawn(f,EJ

−→E Ks)−−−−−−−−−−→ 〈s, skip〉

Fig. 12. Small-step operational semantics for threads,
α−→γ . The parameter γ is fixed,

and not shown.
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T ‖ 〈s, skip〉 id−→ T T ‖ 〈s, return E;C〉 id−→ T

τ
spawn(f,−→v )−−−−−−−→ τ ′ s(vars(γ(f))) = −→v

T ‖ τ id−→ T ‖ τ ′ ‖ 〈s, code(γ(f))〉

τ
α−→ τ ′ α /∈ {spawn(f,−→v ) | f,−→v }

T ‖ τ α−→ T ‖ τ ′

Fig. 13. Small-step operational semantics for thread pools,
α−→γ .
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