
Types and Terms Translated: Unrestricted
Resources in Encoding Functions as Processes
Joseph W. N. Paulus !Ï �

University of Groningen, The Netherlands

Daniele Nantes-Sobrinho !Ï �

University of Brasília, Brasília, Brazil

Jorge A. Pérez ! Ï �

University of Groningen, The Netherlands

Abstract
Type-preserving translations are effective rigorous tools in the study of core programming calculi.
In this paper, we develop a new typed translation that connects sequential and concurrent calculi;
it is governed by type systems that control resource consumption. Our main contribution is the
source language, a new resource λ-calculus with non-determinism and failures, dubbed uλ ⊕. In uλ ⊕,
resources are split into linear and unrestricted; failures are explicit and arise from this distinction.
We define a type system based on intersection types to control resources and fail-prone computation.
The target language is sπ, an existing session-typed π-calculus that results from a Curry-Howard
correspondence between linear logic and session types. Our typed translation subsumes our prior
work; interestingly, it treats unrestricted resources in uλ ⊕ as client-server session behaviours in sπ.

2012 ACM Subject Classification Theory of computation→ Type structures; Theory of computation
→ Process calculi

Keywords and phrases Resource λ-calculus, intersection types, session types, process calculi.

Funding Research partially supported by the Dutch Research Council (NWO) under project No.
016.Vidi.189.046 (Unifying Correctness for Communicating Software).

Acknowledgements We are grateful to the anonymous reviewers for their constructive feedback.

1 Introduction

Context Type-preserving translations are effective rigorous tools in the study of core
programming calculi. They can be seen as an abstract counterpart to the type-preserving
compilers that enable key optimisations in the implementation of programming languages.
The goal of this paper is to develop a new typed translation that connects sequential and
concurrent calculi, and is governed by type systems that control resource consumption.

A central idea in the resource λ-calculus is to consider that in an application M N the
argument N is a resource of possibly limited availability. This generalisation of the λ-calculus
triggers many fascinating questions, such as typability, solvability, expressiveness power,
etc., which have been studied in different settings (see, e.g., [1, 3, 16, 7]). In established
resource λ-calculi, such as those by Boudol [1] and by Pagani and Ronchi della Rocca [16], a
more general form of application is considered: a term can be applied to a bag of resources
B = *N1 + · . . . · *Nk+, where N1, . . . , Nk denote terms; then, an application M B must take
into account that each Ni may be reusable or not. Thus, non-determinism is natural in
resource λ-calculi, because a term has now multiple ways of consuming resources from the
bag. This bears a strong resemblance with process calculi such as the π-calculus [15], in
which concurrent interactions are intrinsically non-deterministic.

There are different flavors of non-determinism. Over two decades ago, Boudol and
Laneve [2, 3] explored connections between a resource λ-calculus and the π-calculus. In

ar
X

iv
:2

11
2.

01
59

3v
2

 [
cs

.P
L

]
 3

0
M

ay
 2

02
2

mailto:j.w.n.paulus@rug.nl
https://www.rug.nl/staff/j.w.n.paulus/?lang=en
https://orcid.org/0000-0002-1711-9361?lang=en
mailto:daniele.nantes@gmail.com
https://www.mat.unb.br/~dnantes/Welcome.html
https://orcid.org/0000-0002-1959-8730
mailto:j.a.perez@rug.nl
https://www.jperez.nl
https://orcid.org/0000-0002-1452-6180

2 Unrestricted Resources in Encoding Functions as Processes

their setting, an application M B would branch, i.e., M could consume a resource Nj in B

(with j ∈ {1, . . . k}) and discard the other k − 1 resources in a non-confluent manner; this is
what we call a collapsing approach to non-determinism. On a different direction, Pagani and
Ronchi della Rocca [16] proposed λr, a resource λ-calculus that implements non-collapsing
non-determinism, whereby all the possible alternatives for resource consumption are retained
together in a sum, ensuring confluence. They investigated typability and characterisations
of solvability in λr, but no connection with the π-calculus was established. In an attempt
to address this gap, our previous work [17] identified λ ⊕, a resource λ-calculus with non-
collapsing non-determinism, explicit failure, and linear resources (to be used exactly once),
and developed a correct typed translation into a session typed π-calculus [5]. The calculus λ ⊕,
however, does not include unrestricted resources (to be used zero or many times).

This Paper Here we introduce a new λ-calculus, dubbed uλ ⊕, its intersection type system,
and its translation into session-typed processes. Our motivation is twofold: to elucidate the
status of unrestricted resources in a functional setting with non-collapsing non-determinism,
and to characterise unrestricted resources within a translation of functions into processes.
Unlike its predecessors, uλ ⊕ distinguishes between linear and unrestricted resources. This
distinction determines the semantics of terms and especially the deadlocks (failures) that
arise due to mismatches in resources. This way, uλ ⊕ subsumes λ ⊕, which is purely linear
and cannot express failures related to unrestricted resources.

Distinguishing linear and unrestricted resources is not a new insight. This idea goes back
to Boudol’s λ-calculus with multiplicities [1], where arguments can be tagged as unrestricted.
What is new about uλ ⊕ is that the distinction between linear and unrestricted resources
leads to two main differences. First, occurrences of a variable can be linear or unrestricted,
depending on the kind of resources they should be substituted with. This way, e.g., a linear
occurrence of variable must be substituted with a linear resource. In uλ ⊕, a variable can
have linear and unrestricted occurrences in the same term. (Notice that we use the adjective
‘linear’ in connection to resources used exactly once, and not to the number of occurrences of
a variable in a term.) Second, failures depend on the nature of the involved resource(s). In
uλ ⊕, a linear failure arises from a mismatch between required and available (linear) resources;
an unrestricted failure arises when a specific (unrestricted) resource is not available.

Accordingly, the syntax of uλ ⊕ incorporates linear and unrestricted resources, enabling
their consistent separation, within non-collapsing non-determinism. The calculus allows
for linear and unrestricted occurrences of variables, as just discussed; bags comprise two
separate zones, linear and unrestricted; and the failure term failx1,··· ,xn explicitly mentions
the linear variables x1, . . . , xn. The (lazy) reduction semantics of uλ ⊕ includes two different
rules for “fetching” terms from bags, and for consistently handling the failure term.

We equip uλ ⊕ with non-idempotent intersection types, extending the approach in [17]:
in uλ ⊕, intersection types account for more than resource multiplicity, since the elements
of the unrestricted bag can have different types. Using intersection types, we define a class
of well-formed uλ ⊕ expressions, which includes terms that correctly consume resources but
also terms that may reduce to the failure term. Well-formed expressions thus subsume the
well-typed expressions that can be defined in a sub-language of uλ ⊕ without the failure term.

The calculus uλ ⊕ can express terms whose dynamic behaviour is not captured by prior
works. This way, e.g., the identity function I admits two formulations, depending on whether
the variable occurrence is linear or unrestricted. One can have λx.x, as usual, but also the
unrestricted variant λx.x[i], where ‘[i]’ is an index annotation (similar to a qualifier or a tag),
which indicates that x should be replaced by the i-th element of the unrestricted zone of the

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 3

bag. The behaviour of these functions will depend on the bags that are provided as their
arguments. Similarly, we can express variants of ∆ = λx.xx and Ω = ∆ ∆ whose behaviours
again depend on linear or unrestricted occurrences of variables and bags. Consider the term
∆7 = λx.(x[1](1 ⋆ *x[1] +! ⋄ * x[2]+!)), where we use ‘⋆’ to separate linear and unrestricted
resources in the bag, and ‘⋄’ denotes concatenation of unrestricted resources. Term ∆7 is an
abstraction on x of an application of an unrestricted occurrence of x, which aims to consume
the first component of an unrestricted bag, to a bag with an empty linear zone (denoted
1) and an unrestricted zone with resources *x[1]+! and *x[2]+!. The self-application ∆7∆7
produces a non-terminating behaviour and yet ∆7 itself is well-formed (see Example 16).

Both uλ ⊕ and λ ⊕ are logically motivated resource λ-calculi, in the following sense: their
design has been strongly influenced by sπ, a typed π-calculus resulting from the Curry-Howard
correspondence between linear logic and session types in [5], where proofs correspond to
processes and cut elimination to process communication. As demonstrated in [5], providing
primitive support for explicit failures is key to expressing many useful programming idioms
(such as exceptions); this insight is a leading motivation in our design for uλ ⊕.

To attest to the logical underpinnings of uλ ⊕, we develop a typed translation (or encoding)
of uλ ⊕ into sπ and establish its correctness with respect to well-established criteria [9, 14].
As in [17], we encode λ ⊕ into sπ by relying on an intermediate language with sharing
constructs [10, 8, 13]. A key idea in encoding uλ ⊕ is to codify the behaviour of unrestricted
occurrences of a variable and their corresponding resources in the bag as client-server
connections, leveraging the copying semantics for the exponential “!A” induced by the Curry-
Howard correspondence. This typed encoding into sπ justifies the semantics of uλ ⊕ in terms
of precise session protocols (i.e., linear logic propositions, because of the correspondence).

In summary, the main contributions of this paper are: (1) The resource calculus uλ ⊕
of linear and unrestricted resources, and its associated intersection type system. (2) A
typed encoding of uλ ⊕ into sπ, which connects well-formed expressions (disciplined by
intersection types) and well-typed concurrent processes (disciplined by session types, under
the Curry-Howard correspondence with linear logic), subsuming the results in [17].

Additional Material The appendices contain omitted material. App. A collects technical
details on uλ ⊕. App. B details the proof of subject reduction for well-formed uλ ⊕ expressions.
App. C–App. F collect omitted definitions and proofs for our encoding of uλ ⊕ into sπ.

2 uλ ⊕: Unrestricted Resources, Non-Determinism, and Failure

Syntax. We shall use x, y, . . . to range over variables, and i, j . . ., as positive integers, to
range over indices. Variable occurrences will be annotated to distinguish the kind of resource
they should be substituted with (linear or unrestricted). With a slight abuse of terminology,
we may write ‘linear variable’ and ‘unrestricted variable’ to refer to linear and unrestricted
occurrences of a variable. As we will see, a variable’s annotation will be inconsequential for
binding purposes. We write x̃ to abbreviate x1, . . . , xn, for n ≥ 1 and each xi distinct.

4 Unrestricted Resources in Encoding Functions as Processes

▶ Definition 1 (uλ̂ ⊕). We define terms (M, N), bags (A, B), and expressions (M,N) as:

(Annotations) [∗] ::= [i] | [ℓ] i ∈ N

(Terms) M, N ::= x[∗] | λx.M | (M B) | M⟨⟨B/x⟩⟩ | failx̃

(Linear Bags) C, D ::= 1 | * M + ·C
(Unrestricted Bags) U, V ::= 1! | * M +! | U ⋄ V

(Bags) A, B ::= C ⋆ U

(Expressions) M,N ::= M | M + N

To lighten up notation, we shall omit the annotation for linear variables. This way, e.g., we
write (λx.x)B rather than (λx.x[ℓ])B.

Definition 1 introduces three syntactic categories: terms (in functional position); bags
(multisets of resources, in argument position), and expressions, which are finite formal sums
that denote possible results of a computation. Below we describe each category in details.

Terms (unary expressions):
Variables: We write x[ℓ] to denote a linear occurrence of x, i.e, an occurrence that
can only be substituted for linear resources. Similarly, x[i] denotes an unrestricted
occurrence of x, i.e., an occurrence that can only be substituted for a resource located
at the i-th position of an unrestricted bag.
Abstractions λx.M of a variable x in a term M , which may have contain linear
or unrestricted occurrences of x. This way, e.g., λx.x and λx.x[i] are linear and
unrestricted versions of the identity function. Notice that the scope of x is M , as usual,
and that λx.(·) binds both linear and unrestricted occurrences of x.
Applications of a term M to a bag B (written M B) and the explicit substitution
of a bag B for a variable x (written ⟨⟨B/x⟩⟩) are as expected (cf. [1, 3]). Notice that
in M⟨⟨B/x⟩⟩ the occurrences of x in M , linear and unrestricted, are bound. Some
conditions apply to B: this will be evident later on, after we define our operational
semantics (cf. Fig. 1).
The failure term failx̃ denotes a term that will result from a reduction in which there
is a lack or excess of resources, where x̃ denotes a multiset of free linear variables that
are encapsulated within failure.

A bag B is defined as C ⋆ U : the concatenation of a bag of linear resources C with a bag
(actually, a list) of unrestricted resources U . We write *M+ to denote the linear bag that
encloses term M , and use *M+! in the unrestricted case.

Linear bags (C, D, . . .) are multisets of terms. The empty linear bag is denoted 1. We
write C1 · C2 to denote the concatenation of C1 and C2; this is a commutative and
associative operation, where 1 is the identity.
Unrestricted bags (U, V, . . .) are ordered lists of terms. The empty unrestricted bag is
denoted as 1!. The concatenation of U1 and U2 is denoted by U1 ⋄U2; this operation is
associative but not commutative. Given i ≥ 1, we write Ui to denote the i-th element
of the unrestricted (ordered) bag U .

Expressions are sums of terms, denoted as
∑n

i Ni, where n > 0. Sums are associative
and commutative; reordering of the terms in a sum is performed silently.

▶ Example 2. Consider the term M := λx.(x[1] * x + ⋆ * y[1]+!), which has linear and
unrestricted occurrences of the same variable. This is an abstraction of an application that
contains two bound occurrences of x (one unrestricted with index 1, and one linear) and

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 5

one free unrestricted occurrence of y[1], occurring in an unrestricted bag. As we will see, in
M (C ⋆ U), the unrestricted occurrence ‘x[1]’ should be replaced by the first element of U .

The salient features of uλ ⊕—the explicit construct for failure, the index annotations on
unrestricted variables, the ordering of unrestricted bags—are design choices that will be
responsible for interesting behaviours, as the following examples illustrate.

▶ Example 3. As already mentioned, uλ ⊕ admits different variants of the usual λ-term
I = λx.x. We could have one in which x is a linear variable (i.e., λx.x), but also several
possibilities if x is unrestricted (i.e., λx.x[i], for some positive integer i). Interestingly,
because uλ ⊕ supports failures, non-determinism, and the consumption of arbitrary terms of
the unrestricted bag, these two variants of I can have behaviours that may differ from the
usual interpretation of I. In Example 9 we will show that the six terms below give different
behaviours:

M1 = (λx.x)(*N + ⋆U)
M2 = (λx.x)(*N1 + ·*N2 +⋆U)
M3 = (λx.x[1])(*N + ⋆1!)

M4 = (λx.x[1])(1 ⋆ *N +! ⋄U)
M5 = (λx.x[1])(1 ⋆ 1! ⋄ U)
M6 = (λx.x[i])(C ⋄ U)

We will see that M1, M4, M6 reduce without failures, whereas M2, M3, M5 reduce to failure.

▶ Example 4. Similarly, uλ ⊕ allows for several forms of the standard λ-terms such as
∆ := λx.xx and Ω := ∆∆, depending on whether the variable x is linear or unrestricted:
1. ∆1 := λx.(x(*x + ⋆1!)) consists of an abstraction of a linear occurrence of x applied

to a linear bag containing another linear occurrence of x. There are two forms of
self-applications of ∆1, namely: ∆1(*∆1 + ⋆1!) and ∆1(1 ⋆ *∆1+!).

2. ∆4 := λx.(x[1](*x+⋆1!)) consists of an unrestricted occurrence of x applied to a linear bag
(containing a linear occurrence of x) that is composed with an empty unrestricted bag.
Similarly, there are two self-applications of ∆4, namely: ∆4(*∆4 + ⋆1!) and ∆4(1 ⋆ *∆4+!).

3. We show applications of an unrestricted variable occurrence (x[2] or x[1]) applied to an
empty linear bag composed with a non-empty unrestricted bag (of size two):

∆3 = λx.(x[1](1 ⋆ *x[1] +! ⋄ * x[1]+!))
∆5 := λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[2]+!))

∆6 := λx.(x[1](1 ⋆ *x[1] +! ⋄ * x[2]+!))
∆7 := λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!))

Applications between these terms express behaviour, similar to a lazy evaluation of Ω:
Ω5 := ∆5(1 ⋆ *∆5 +! ⋄ * ∆5+!)
Ω5,6 := ∆5(1 ⋆ *∆5 +! ⋄ * ∆6+!)

Ω6,5 := ∆6(1 ⋆ *∆5 +! ⋄ * ∆6+!)
Ω7 := ∆7(1 ⋆ *∆7 +! ⋄ * ∆7+!)

The behaviour of these terms will be made explicit later on (see Examples 11 and 12).

Semantics. The semantics of uλ ⊕ captures that linear resources can be used only once, and
that unrestricted resources can be used ad libitum. Thus, the evaluation of a function applied
to a multiset of linear resources produces different possible behaviours, depending on the way
these resources are substituted for the linear variables. This induces non-determinism, which
we formalise using a non-collapsing approach, in which expressions keep all the different
possibilities open, and do not commit to one of them. This is in contrast to collapsing
non-determinism, in which selecting one alternative discards the rest.

We define a reduction relation −→, which operates lazily on expressions. Informally, a
β-reduction induces an explicit substitution of a bag B = C ⋆ U for a variable x, denoted
⟨⟨B/x⟩⟩, in a term M . This explicit substitution is then expanded depending on whether the
head of M has a linear or an unrestricted variable. Accordingly, in uλ ⊕ there are two sources
of failure: one concerns mismatches on linear resources (required vs available resources); the
other concerns the unavailability of a required unrestricted resource (an empty bag 1!).

To formalise reduction, we require a few auxiliary notions.

6 Unrestricted Resources in Encoding Functions as Processes

▶ Definition 5. The multiset of free linear variables of M, denoted mlfv(M), is defined below.
We denote by [x] the multiset containing the linear variable x and [x1, . . . , xn] denotes the
multiset containing x1, . . . , xn. We write x̃ ⊎ ỹ to denote the multiset union of x̃, and ỹ and
x̃ \ y to express that every occurrence of y is removed from x̃.

mlfv(x) = [x] mlfv(x[i]) = mlfv(1) = ∅
mlfv(C ⋆ U) = mlfv(C) mlfv(M B) = mlfv(M) ⊎mlfv(B)
mlfv(*M+) = mlfv(M) mlfv(λx.M) = mlfv(M)\{x}

mlfv(M⟨⟨B/x⟩⟩) = (mlfv(M) \ {x}) ⊎mlfv(B) mlfv(*M+ · C) = mlfv(M) ⊎mlfv(C)
mlfv(M + N) = mlfv(M) ⊎mlfv(N) mlfv(failx1,··· ,xn) = [x1, . . . , xn]

A term M (resp. expression M) is called linearly closed if mlfv(M) = ∅ (resp. mlfv(M) = ∅).

▶ Notation 1. We shall use the following notations.
N ∈ M means that N occurs in the sum M. Also, we write Ni ∈ C to denote that Ni

occurs in the linear bag C, and C \Ni to denote the linear bag obtained by removing one
occurrence of Ni from C.
#(x, M) denotes the number of (free) linear occurrences of x in M . Also, #(x, ỹ) denotes
the number of occurrences of x in the multiset ỹ.
PER(C) is the set of all permutations of a linear bag C and Ci(n) denotes the n-th term
in the (permuted) Ci.
size(C) denotes the number of terms in a linear bag C. That is, size(1) = 0 and
size(*M + ·C) = 1 + size(C). Given a bag B = C ⋆ U , we define size(B) as size(C).

▶ Definition 6 (Head). Given a term M , we define head(M) inductively as:

head(x) = x head(M B) = head(M) head(λx.M) = λx.M

head(x[i]) = x[i] head(failx̃) = failx̃ head(M⟨⟨B/x⟩⟩) =

{
head(M) if #(x, M) = size(B)
fail∅ otherwise

▶ Definition 7 (Head Substitution). Let M be a term such that head(M) = x. The head
substitution of a term N for x in M , denoted M{|N/x|}, is inductively defined as follows
(where x ̸= y):

x{|N/x|} = N (M B){|N/x|} = (M{|N/x|}) B (M ⟨⟨B/y⟩⟩){|N/x|} = (M{|N/x|}) ⟨⟨B/y⟩⟩

When head(M) = x[i], the head substitution M{|N/x[i]|} works as expected: x[i]{|N/x[i]|} =
N as the base case of the definition. Finally, we define contexts for terms and expressions:

▶ Definition 8 (Evaluation Contexts). Contexts for terms (CTerm) and expressions (CExpr)
are defined by the following grammar:

(CTerm) C[·], C ′[·] ::= ([·])B | ([·])⟨⟨B/x⟩⟩ (CExpr) D[·], D′[·] ::= M + [·]

Reduction is defined by the rules in Fig. 1. Rule [R : Beta] induces explicit substitutions.
Resource consumption is implemented by two fetch rules, which open up explicit substitutions:

Rule [R : Fetchℓ], the linear fetch, ensures that the number of required resources matches
the size of the linear bag C. It induces a sum of terms with head substitutions, each
denoting the partial evaluation of an element from C. Thus, the size of C determines the
summands in the resulting expression.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 7

[R : Beta]
(λx.M)B −→M⟨⟨B/x⟩⟩

head(M) = x C = *N1+ · · · · · *Nk+ , k ≥ 1 #(x, M) = k
[R : Fetchℓ]

M⟨⟨C ⋆ U/x⟩⟩ −→M{|N1/x|}⟨⟨(C \N1) ⋆ U/x⟩⟩+ · · ·+ M{|Nk/x|}⟨⟨(C \Nk) ⋆ U/x⟩⟩

head(M) = x[i] #(x, M) = size(C) Ui = *N+!

[R : Fetch!]
M ⟨⟨C ⋆ U/x⟩⟩ −→M{|N/x[i]|}⟨⟨C ⋆ U/x⟩⟩

#(x, M) ̸= size(C) ỹ = (mlfv(M)\ x) ⊎mlfv(C)
[R : Failℓ]

M⟨⟨C ⋆ U/x⟩⟩ −→
∑

PER(C)

failỹ

#(x, M) = size(C) Ui = 1! head(M) = x[i]
[R : Fail!]

M⟨⟨C ⋆ U/x⟩⟩−→M{|fail∅/x[i]|}⟨⟨C ⋆ U/x⟩⟩

ỹ = mlfv(C)
[R : Cons1]

(failx̃) C ⋆ U −→
∑

PER(C)

failx̃⊎ỹ

#(z, x̃) = size(C) ỹ = mlfv(C)
[R : Cons2]

failx̃ ⟨⟨C ⋆ U/z⟩⟩ −→
∑

PER(C)

fail(̃x\z)⊎ỹ

M −→ M′
[R : ECont]

D[M] −→ D[M′]
M −→

∑k

i=1 M ′
i[R : TCont]

C[M] −→
∑k

i=1 C[M ′
i]

Figure 1 Reduction rules for uλ ⊕.

Rule [R : Fetch!], the unrestricted fetch, consumes a resource occurring in a specific
position of the unrestricted bag U via a linear head substitution of an unrestricted
variable occurring in the head of the term. In this case, reduction results in an explicit
substitution with U kept unaltered. Note that we check for the size of the linear bag C:
in the case #(x, M) ̸= size(C), the term evolves to a linear failure via Rule [R : failℓ]
(see Example 10). This is another design choice: linear failure is prioritised in uλ ⊕.

Four rules show reduction to failure terms, and accumulate free variables involved in
failed reductions. Rules [R : Failℓ] and [R : Fail!] formalise the failure to evaluate an explicit
substitution M⟨⟨C ⋆ U/x⟩⟩. The former rule targets a linear failure, which occurs when the
size of C does not match the number of occurrences of x. The multiset ỹ preserves all free
linear variables in M and C. The latter rule targets an unrestricted failure, which occurs
when the head of the term is x[i] and Ui (i.e., the i-th element of U) is empty. In this
case, failure preserves the free linear variables in M and C excluding the head unrestricted
occurrence x[i] which is replaced by fail∅.

Rules [R : Cons1] and [R : Cons2] describe reductions that lazily consume the failure term,
when a term has failx̃ at its head position. The former rule consumes bags attached to it
whilst preserving all its free linear variables; the latter rule consumes explicit substitution
attached to it whilst also preserving all its free linear variables. The side condition #(z, x̃) =
size(C) is necessary in Rule [R : Cons2] to avoid a clash with the premise of Rule [R : Failℓ].
Finally, Rules [R : ECont] and [R : TCont] state closure by the C and D contexts (cf. Def. 8).

Notice that the left-hand sides of the reduction rules in uλ ⊕ do not interfere with each

8 Unrestricted Resources in Encoding Functions as Processes

other. As a result, reduction in uλ ⊕ satisfies a diamond property: for all M ∈ uλ ⊕, if there
exist M1,M2 ∈ uλ ⊕ such that M −→ M1 and M −→ M2, then there exists N ∈ uλ ⊕ such
that M1 −→ N←−M2 (see App. A).

▶ Notation 2. As usual, −→∗ denotes the reflexive-transitive closure of −→. We write
N −→[R] M to denote that [R] is the last (non-contextual) rule used in the step from N to M.

▶ Example 9 (Cont. Example 3). We illustrate different reductions for λx.x and λx.x[i].
1. M1 = (λx.x)(*N + ⋆U) concerns a linear variable x with an linear bag containing one

element. This is similar to the usual meaning of applying an identity function to a term:
(λx.x)(*N + ⋆U) −→[R:Beta] x⟨⟨*N + ⋆U/x⟩⟩ −→[R:Fetchℓ] x{|N/x|}⟨⟨1 ⋆ U/x⟩⟩ = N⟨⟨1 ⋆ U/x⟩⟩,
with a “garbage collector” that collects unused unrestricted resources.

2. M2 = (λx.x)(*N1 + · * N2 + ⋆U) concerns the case in which a linear variable x has a single
occurrence but the linear bag has size two. Term M2 reduces to a sum of failure terms:
(λx.x)(*N1 + · * N2 + ⋆U) −→[R:Beta] x⟨⟨*N1 + · * N2 + ⋆U/x⟩⟩ −→[R:Failℓ]

∑
PER(C)

failỹ

for C = *N1 + · * N2+ and ỹ = mlfv(C).
3. M3 = (λx.x[1])(*N + ⋆1!) represents an abstraction of an unrestricted variable, which

aims to consume the first element of the unrestricted bag. Because this bag is empty, M3
reduces to failure:
(λx.x[1])(*N + ⋆1!) −→[R:Beta] x[1]⟨⟨*N + ⋆1!

/x⟩⟩ −→[R:failℓ] failỹ,
for ỹ = mlfv(N). Notice that 0 = #(x, x[1]) ̸= size(*N+) = 1, since there are no linear
occurrences of x in x[1].

▶ Example 10. To illustrate the need to check ‘size(C)’ in [R : Fail!], consider the term
x[1]⟨⟨*M + ⋆1!

/x⟩⟩, which features both a mismatch of linear bags for the linear variables to
be substituted and an empty unrestricted bag with the need for the first element to be
substituted. We check the size of the linear bag because we wish to prioritise the reduction
of Rule [R : Failℓ]. Hence, in case of a mismatch of linear resources we wish not to perform a
reduction via Rule [R : Fail!]. This is a design choice: our semantics collapses linear failure
at the earliest moment it arises.

▶ Example 11 (Cont. Example 4). Self-applications of ∆1 do not behave as an expected
variation of a lazy reduction from Ω. Both ∆1(*∆1 + ⋆1!) and ∆1(1 ⋆ *∆1+!) reduce to failure
since the number of linear occurrences of x does not match the number of resources in the
linear bag: ∆1(*∆1 + ⋆1!) −→ (x(*x + ⋆1))⟨⟨*∆1 + ⋆1!

/x⟩⟩ −→ fail∅.

The term ∆4(1⋆*∆4+!) also fails: the linear bag is empty and there is one linear occurrence
of x in ∆4. Note that ∆4(*∆4 + ⋆ * ∆4+!) reduces to another application of ∆4 before failing:

∆4(*∆4 + ⋆ * ∆4+!) = (λx.(x[1](*x + ⋆1!)))(*∆4 + ⋆ * ∆4+!)

−→[R:Beta] (x[1](*x + ⋆1!))⟨⟨*∆4 + ⋆ * ∆4+!
/x⟩⟩

−→[R:Fetch!] (∆4(*x + ⋆1!))⟨⟨*∆4 + ⋆ * ∆4+!
/x⟩⟩

−→∗ fail∅⟨⟨*x + ⋆1!
/y⟩⟩⟨⟨*∆4 + ⋆ * ∆4+!

/x⟩⟩

Differently from [17], there are terms in uλ ⊕ that when applied to each other behave similarly
to Ω, namely Ω5,6, Ω6,5, and Ω7 (Example 4).

▶ Example 12 (Cont. Example 4). The following reductions illustrate different behaviours
provided that subtle changes are made within uλ ⊕-terms:

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 9

* *

∆5(1 ⋆ *∆5 +! ⋄ * ∆6+!) ∆5 . . . ⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

*
∆6 . . . ⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!

/x⟩⟩ ∆6 . . . ⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

*

. . .

Figure 2 An Ω-like behaviour in uλ ⊕ (cf. Example 12).

An interesting behaviour of uλ ⊕ is that variations of ∆ can be applied to each other
and appear alternately (highlighted in blue) in the functional position throughout the
computation—this behaviour is illustrated in Fig. 2:
Ω5,6 = ∆5(1 ⋆ *∆5 +! ⋄ * ∆6+!)

= (λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[2]+!)))(1 ⋆ *∆5 +! ⋄ * ∆6+!)

−→[R:Beta] (x[2](1 ⋆ *x[1] +! ⋄ * x[2]+!))⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→[R:Fetch!] (∆6(1 ⋆ *x[1] +! ⋄ * x[2]+!))⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→[R:Beta] (y[1](1 ⋆ *y[1] +! ⋄ * y[2]+!)⟨⟨(1 ⋆ *x[1] +! ⋄ * x[2]+!)/y⟩⟩⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→[R:Fetch!] (x[1](1 ⋆ *y[1] +! ⋄ * y[2]+!)⟨⟨(1 ⋆ *x[1] +! ⋄ * x[2]+!)/y⟩⟩⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→[R:Fetch!] (∆5(1 ⋆ *y[1] +! ⋄ * y[2]+!)⟨⟨(1 ⋆ *x[1] +! ⋄ * x[2]+!)/y⟩⟩⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→ . . .
Applications of ∆7 into two unrestricted copies of ∆7 behave as Ω producing a non-
terminating behaviour. Letting B = 1 ⋆ *x[1] +! ⋄ * x[1]+!, we have:
Ω7 = (λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!)))(1 ⋆ *∆7 +! ⋄ * ∆7+!)

−→[R:Beta] (x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!))⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→[R:Fetch!] (∆7(1 ⋆ *x[1] +! ⋄ * x[1]+!))⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→[R:Beta] (y[2](1 ⋆ *y[1] +! ⋄ * y[1]+!))⟨⟨B/y⟩⟩⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→[R:Fetch!] (x[1](1 ⋆ *y[1] +! ⋄ * y[1]+!))⟨⟨B/y⟩⟩⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→[R:Fetch!] (∆7(1 ⋆ *y[1] +! ⋄ * y[1]+!))⟨⟨B/y⟩⟩⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→ . . .
Later on we will show that this term is well-formed (see Example 16) with respect to the
intersection type system introduced in § 3.

3 Well-Formed Expressions via Intersection Types

We define well-formed uλ ⊕-expressions by relying on a non-idempotent intersection type
system, based on the system by Bucciarelli et al. [4]. Our system for well-formed expressions
subsumes the one in [17]: it uses strict and multiset types to check linear bags; moreover, it
uses list and tuple types to check unrestricted bags. As in [17], we write “well-formedness”
(of terms, bags, and expressions) to stress that, unlike usual type systems, our system can
account for terms that may reduce to the failure term (cf. Remark 18).

▶ Definition 13 (Types for uλ ⊕). We define strict, multiset, list, and tuple types.

(Strict) σ, τ, δ ::= unit | (π, η)→ σ

(Multiset) π, ζ ::=
∧

i∈I σi | ω

(List) η, ϵ ::= σ | ϵ ⋄ η

(Tuple) (π, η)

10 Unrestricted Resources in Encoding Functions as Processes

A strict type can be the unit type or a functional type (π, η)→ σ, where (π, η) is a tuple
type and σ is a strict type. Multiset types can be either the empty type ω or an intersection
of strict types

∧
i∈I σi, with I non-empty. The operator ∧ is commutative, associative,

non-idempotent, that is, σ ∧ σ ̸= σ, with identity ω. The intersection type
∧

i∈I σi is the
type of a linear bag; the cardinality of I corresponds to its size.

A list type can be either an strict type σ or the composition ϵ ⋄ η of two list types ϵ and
η. We use the list type ϵ ⋄ η to type the concatenation of two unrestricted bags. A tuple type
(π, η) types the concatenation of a linear bag of type π with an unrestricted bag of type η.
Notice that a list type ϵ ⋄ η can be recursively unfolded into a finite composition of strict
types σ1 ⋄ . . . ⋄ σn, for some n ≥ 1. In this case the length of ϵ ⋄ η is n and that σi is its i-th
strict type, for 1 ≤ i ≤ n.

▶ Notation 3. Given k ≥ 0, we write σk to stand for σ ∧ · · · ∧ σ (k times, if k > 0) or for
ω (if k = 0). Similarly, x̂ : σk stands for x : σ, · · · , x : σ (k times, if k > 0) or for x : ω (if
k = 0). Given k ≥ 1, we write x! : η to stand for x[1] : η1, · · · , x[k] : ηk.

▶ Notation 4 (η ∝ ϵ). Let ϵ and η be two list types, with the length of ϵ greater or equal to
that of η. Let us write ϵi and ηi to denote the i-th strict type in ϵ and η, respectively. We
write η ∝ ϵ meaning the initial sublist, whenever there exist ϵ′ and ϵ′′ such that: i) ϵ = ϵ′ ⋄ ϵ′′;
ii) the size of ϵ′ is that of η; iii) for all i, ϵ′

i = ηi.

Linear contexts range over Γ, ∆, . . . and unrestricted contexts range over Θ, Υ, They are
defined by the following grammar:

Γ, ∆ ::= - | x : σ | Γ, x : σ Θ, Υ ::= - | x! : η | Θ, x! : η

The empty linear/unrestricted type assignment is denoted ‘-’. Linear variables can
occur more than once in a linear context; they are assigned only strict types. For instance,
x : (τ, σ)→ τ, x : τ is a valid context: it means that x can be of both type (τ, σ)→ τ and τ .
In contrast, unrestricted variables can occur at most once in unrestricted contexts; they are
assigned only list types. The multiset of linear variables in Γ is denoted as dom(Γ); similarly,
dom(Θ) denotes the set of unrestricted variables in Θ.

Judgements are of the form Θ; Γ |= M : σ, where the left-hand side contexts are separated
by “;” and M : σ means that M has type σ. We write |= M : σ to denote - ; - |= M : σ.

▶ Definition 14 (Well-formed uλ ⊕ expressions). An expression M is well-formed (wf, for
short) if there exist Γ, Θ and τ such that Θ; Γ |= M : τ is entailed via the rules in Fig. 3.

We describe the well-formedness rules in Fig. 3.
Rules [F : varℓ] and [F : var!] assign types to linear and unrestricted variables, respectively.
Rule [F : var!] resembles the copy rule [6] where we use a linear copy of an unrestricted
variable x[i] of type σ, typed with x! : η, and type the linear copy with the corresponding
strict type ηi which in this case the linear copy x would have type equal to σ.
Rules [F : 1ℓ] and [F : 1!] assign types to the empty linear/unrestricted bag: 1 has type ω,
whereas 1! has an arbitrary strict type σ. Arbitrariness is allowed since the substitution
of an unrestricted variable for 1! leads to a fail term (Rule [R : Fail!]), which has an
arbitrary strict type.
Rule [F : abs] assigns type (σk, η) → τ to an abstraction λz.M , provided that the
unrestricted occurrences of z may be typed by the unrestricted context containing z! : η,
the linear occurrences of z are typed with the linear context containing ẑ : σk, for some
k ≥ 0, and there are no other linear occurrences of z in the linear context Γ.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11

[F:varℓ] Θ; x : σ |= x : σ
Θ, x! : η; x : ηi, ∆ |= x : σ

[F:var!]
Θ, x! : η; ∆ |= x[i] : σ

[F:1ℓ] Θ; - |= 1 : ω

[F:1!]
Θ; - |= 1! : σ

Θ, z! : η; Γ, ẑ : σk |= M : τ z /∈ dom(Γ)
[F:abs]

Θ; Γ |= λz.M : (σk, η)→ τ

Θ; Γ |= M : (σj , η)→ τ

Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:app]

Θ; Γ, ∆ |= M B : τ

Θ, x! : η; Γ, x̂ : σj |= M : τ

Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:ex-sub]

Θ; Γ, ∆ |= M⟨⟨B/x⟩⟩ : τ

Θ; Γ |= C : σk Θ; - |= U : η
[F:bag]

Θ; Γ |= C ⋆ U : (σk, η)
Θ; Γ |= M : σ Θ; ∆ |= C : σk

[F:bagℓ]
Θ; Γ, ∆ |= *M + ·C : σk+1

Θ; - |= M : σ
[F:bag!]

Θ; - |= *M+! : σ

Θ; - |= U : ϵ Θ; - |= V : η
[F: ⋄ bag!] Θ; - |= U ⋄ V : ϵ ⋄ η

dom(Γ) = x̃
[F:fail]

Θ; Γ |= failx̃ : τ

Θ; Γ |= M : σ Θ; Γ |= N : σ
[F:sum]

Θ; Γ |= M + N : σ

Θ; Γ |= M : σ x ̸∈ dom(Γ)
[F:weak]

Θ; Γ, x : ω |= M : σ

Figure 3 Well-formedness rules for uλ ⊕ (cf. Def. 14). In Rules [F:app] and [F:ex-sub]: k, j ≥ 0.

Rules [F:app] and [F:ex-sub] (for application and explicit substitution, resp.) use the
condition η ∝ ϵ (cf. Notation 4), which captures the portion of the unrestricted bag that
is effectively used in a term: it ensures that ϵ can be decomposed into some ϵ′ and ϵ′′, such
that each type component ϵ′

i matches with ηi. If this requirement is satisfied, Rule [F:app]
types an application M B given that M has a functional type in which the left of the
arrow is a tuple type (σj , η) whereas the bag B is typed with tuple (σk, ϵ). Similarly,
Rule [F:ex-sub] types the term M⟨⟨B/x⟩⟩ provided that B has the tuple type (σk, ϵ) and
M is typed with the variable x having linear type assignment σj and unrestricted type
assignment η.

▶ Remark 15. Differently from intersection type systems [4, 16], in Rules [F:app] and [F:ex-sub]
there is no equality requirement between j and k, as we would like to capture terms that
fail due to a mismatch in resources: we only require that the linear part of the tuples are
composed of the same strict type, say σ. As a term can take an unrestricted bag with
arbitrary size we only require that the elements of the unrestricted bag that are used have
a “consistent” type, i.e., the type of the unrestricted bag satisfies the relation ∝ with the
unrestricted fragment of the corresponding tuple type.
There are four rules for bags:

Rule [F : bag!] types an unrestricted bag *M+! with the type σ of M . Note that *x+!,
an unrestricted bag containing a linear variable x, is not well-formed, whereas *x[i]+! is
well-formed.
Rule [F : bag] assigns the tuple type (σk, η) to the concatenation of a linear bag of type
σk with an unrestricted bag of type η.
Rules [F : bagℓ] and [F: ⋄ bag!] type the concatenation of linear and unrestricted bags.
Rule [F:1!] allows an empty unrestricted bag to have an arbitrary σ type since it may be
referred to by a variable for substitution: we must be able to compare its type with the
type of unrestricted variables that may consume the empty bag (this reduction would
inevitably lead to failure).

As in [17], Rule [F:fail] handles the failure term, and is the main difference with respect to
standard type systems. Rules for sums and weakening ([F : sum] and [F : weak]) are standard.

12 Unrestricted Resources in Encoding Functions as Processes

▶ Example 16 (Cont. Example 12). Term ∆7 := λx.x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!) is well-formed,
as ensured by the judgement Θ; - |= ∆7 : (ω, σ′ ⋄ (σj , σ′ ⋄ σ′)→ τ)→ τ , whose derivation is
given below:

Π3 is the derivation of Θ, x! : η; - |= *x[1]+! : σ′, for η = σ′ ⋄ (σj , σ′ ⋄ σ′)→ τ .
Π4 is the derivation: Θ, x! : η; - |= x[2] : (σj , σ′ ⋄ σ′)→ τ

Π5 is the derivation: Θ, x! : η; x : ω |= (1 ⋆ *x[1] +! ⋄ * x[1]+!) : (ω, σ′ ⋄ σ′)
Therefore,

Π5 Π4 σ′ ⋄ σ′ ∝ σ′ ⋄ σ′
[F:app]

Θ, x! : η; x : ω |= x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!) : τ
[F:abs]

Θ; - |= λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!))︸ ︷︷ ︸
∆7

: (ω, η)→ τ

Well-formed expressions satisfy subject reduction (SR); see App. B for a proof.

▶ Theorem 17 (SR in uλ ⊕). If Θ; Γ |= M : τ and M −→M′ then Θ; Γ |= M′ : τ .

Proof. By structural induction on the reduction rules. We proceed by analysing the rule ap-
plied in M. An interesting case occurs when the rule is [F : Fetch!]: Then M = M ⟨⟨C ⋆ U/x⟩⟩,
where U = *N1 +! ⋄ · · · ⋄ *Nl+! and head(M) = x[i]. The reduction is as follows:

head(M) = x[i] Ui = *Ni+!
[R : Fetch!]

M ⟨⟨C ⋆ U/x⟩⟩ −→M{|Ni/x[i]|}⟨⟨C ⋆ U/x⟩⟩

By hypothesis, one has the derivation:

Θ, x! : η; Γ′, x̂ : σj |= M : τ

Π
Θ; · |= U : ϵ Θ; ∆ |= C : σk

[F:bag]
Θ; ∆ |= C ⋆ U : (σk, ϵ) η ∝ ϵ

[F:ex-sub]
Θ; Γ′, ∆ |= M⟨⟨C ⋆ U/x⟩⟩ : τ

where Π has the form

Θ; · |= N1 : ϵ1[F:bag!]
Θ; · |= *N1+! : ϵ1 · · ·

Θ; · |= Nl : ϵl[F:bag!]
Θ; · |= *Nl+! : ϵl[F: ⋄ bag!]

Θ; · |= *N1 +! ⋄ · · · ⋄ *Nl+! : ϵ

with Γ = Γ′, ∆. Notice that if ϵi = δ and η ∝ ϵ then ηi = δ. By Lemma 35, there exists a
derivation Π1 of Θ, x! : η; Γ′, x̂ : σj |= M{|Ni/x[i]|} : τ . Therefore, we have:

Θ, x! : η; Γ′, x̂ : σj |= M{|N1/x[i]|} : τ

Θ; · |= U : ϵ Θ; ∆ |= C : σk

[F:bag]
Θ; ∆ |= C ⋆ U : (σk, ϵ) η ∝ ϵ

[F:ex-sub]
Θ; Γ′, ∆ |= M{|Ni/x[i]|}⟨⟨C ⋆ U/x⟩⟩ : τ

◀

▶ Remark 18 (Well-Formed vs Well-Typed Expressions). Our type system (and Theorem 17)
can be specialised to the case of well-typed expressions that do not contain (and never reduce
to) the failure term. In particular, Rules [F:app] and [F:ex-sub] would need to check that
σk = σj , as failure can be caused due to a mismatch of linear resources. A difference between
well typed and well formed expressions is that the former satisfy subject expansion, but the
latter do not: expressions that lead to failure can be ill-typed yet failure itself is well-formed.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 13

uλ ⊕ uλ̂ ⊕ sπ
L · M◦

§ 4.3 § 4.4

J · Ku

Figure 4 Our two-step approach to encode uλ ⊕ into sπ.

4 A Typed Encoding of uλ ⊕ into Concurrent Processes

We encode uλ ⊕ into sπ, a session π-calculus that stands on a Curry-Howard correspondence
between linear logic and session types (§ 4.1). We extend the two-step approach that we
devised in [17] for the sub-calculus λ ⊕ (with linear resources only) (cf. Fig. 4). First, in § 4.3,
we define an encoding L · M◦ from well-formed expressions in uλ ⊕ to well-formed expressions
in a variant of uλ ⊕ with sharing, dubbed uλ̂ ⊕ (§ 4.2). Then, in § 4.4, we define an encoding
J · Ku (for a name u) from well-formed expressions in uλ̂ ⊕ to well-typed processes in sπ.

We prove that L · M◦ and J · Ku satisfy well-established correctness criteria [9, 14]: type
preservation, operational completeness, operational soundness, and success sensitiveness
(cf. App. E.1). Because uλ ⊕ includes unrestricted resources, the results given here strictly
generalise those in [17].

4.1 sπ: A Session-Typed π-Calculus
sπ is a π-calculus with session types [11, 12], which ensure that the endpoints of a channel
perform matching actions. We consider the full process framework in [5], including constructs
for specifying labelled choices and client/server connections; they will be useful to codify
unrestricted resources and variables in uλ ⊕. Following [6, 18], sπ stands on a Curry-Howard
correspondence between session types and a linear logic with dual modalities/types (NA and
⊕A), which define non-deterministic session behaviour. As in [6, 18], in sπ, cut elimination
corresponds to communication, proofs to processes, and propositions to session types.

Syntax. Names x, y, z, w . . . denote the endpoints of protocols specified by session types.
We write P{x/y} for the capture-avoiding substitution of x for y in process P .

▶ Definition 19 (Processes). The syntax of sπ processes is given by the grammar below.

P, Q ::= 0 | x(y).P | x(y).P | x.li; P | x.casei∈I{li : Pi} | x.close | x.close; P

| (P | Q) | [x↔ y] | (νx)P | !x(y).P | x?(y).P
| x.some; P | x.none | x.some(w1,··· ,wn); P | (P ⊕Q)

Process 0 denotes inaction. Process x(y).P sends a fresh name y along x and then continues
as P . Process x(y).P receives a name z along x and then continues as P{z/y}. Process
x.casei∈I{li : Pi} is a branching construct, with labelled alternatives indexed by the finite
set I: it awaits a choice on x with continuation Pj for each j ∈ I. Process x.li; P selects on
x the alternative indexed by i before continuing as P . Processes x.close and x.close; P are
complementary actions for closing session x. We sometimes use the shorthand notations y[]
and y[]; P to stand for y.close and y.close; P , respectively. Process P | Q is the parallel
execution of P and Q. The forwarder process [x↔ y] denotes a bi-directional link between
sessions x and y. Process (νx)P denotes the process P in which name x is kept private
(local) to P . Process !x(y).P defines a server that spawns copies of P upon requests on x.
Process x?(y).P denotes a client that connects to a server by sending the fresh name y on x.

14 Unrestricted Resources in Encoding Functions as Processes

x(y).Q | x(y).P −→ (νy)(Q | P) x.some; P | x.some(w1,··· ,wn); Q −→ P | Q
Q −→ Q′ ⇒ P ⊕Q −→ P ⊕Q′ x.close | x.close; P −→ P

x.li; Q | x.casei∈I{li : Pi} −→ Q | Pi !x(y).Q | x?(y).P −→ (νx)(!x(y).Q | (νy)(Q | P))
(νx)([x↔ y] | P) −→ P{y/x} (x ̸= y) P ≡ P ′ ∧ P ′ −→ Q′ ∧Q′ ≡ Q⇒ P −→ Q

Q −→ Q′ ⇒ P | Q −→ P | Q′ P −→ Q⇒ (νy)P −→ (νy)Q
x.none | x.some(w1,··· ,wn); Q −→ w1.none | · · · | wn.none

Figure 5 Reduction for sπ

The remaining constructs come from [5] and introduce non-deterministic sessions which
may provide a session protocol or fail. Process x.some; P confirms that the session on x will
execute and continues as P . Process x.none signals the failure of implementing the session on
x. Process x.some(w1,··· ,wn); P specifies a dependency on a non-deterministic session x. This
process can either (i) synchronise with an action x.some and continue as P , or (ii) synchronise
with an action x.none, discard P , and propagate the failure on x to (w1, · · · , wn), which
are sessions implemented in P . When x is the only session implemented in P , there is no
tuple of dependencies (w1, · · · , wn) and so we write simply x.some; P . Finally, process P ⊕Q

denotes a non-deterministic choice between P and Q. We shall often write
⊕

i∈{1,··· ,n} Pi

to stand for P1 ⊕ · · · ⊕ Pn. In (νy)P and x(y).P the occurrence of name y is binding, with
scope P . The set of free names of P is denoted by fn(P).

Semantics. The reduction relation of sπ specifies the computations that a process performs
on its own (cf. Fig. 5). It is closed by structural congruence, denoted ≡, which expresses basic
identities for processes and the non-collapsing nature of non-determinism (cf. App. C).

The first reduction rule formalises communication, which concerns bound names only
(internal mobility), as y is bound in x(y).Q and x(y).P . Reduction for the forwarder process
leads to a substitution. The reduction rule for closing a session is self-explanatory, as is the
rule in which prefix x.some confirms the availability of a non-deterministic session. When
a non-deterministic session is not available, x.none triggers this failure to all dependent
sessions w1, . . . , wn; this may in turn trigger further failures (i.e., on sessions that depend
on w1, . . . , wn). The remaining rules define contextual reduction with respect to restriction,
composition, and non-deterministic choice.

Type System Session types govern the behaviour of the names of a process. An assignment
x : A enforces the use of name x according to the protocol specified by A.

▶ Definition 20 (Session Types). Session types are given by

A, B ::= ⊥ | 1 | A⊗B | A O B | ⊕i∈I {li : Ai} | Ni∈I{li : Ai} | !A | ?A | NA | ⊕A

The multiplicative units ⊥ and 1 are used to type closed session endpoints. We use A⊗B to
type a name that first outputs a name of type A before proceeding as specified by B. Similarly,
A O B types a name that first inputs a name of type A before proceeding as specified by B.
Then, !A types a name that repeatedly provides a service specified by A. Dually, ?A is the
type of a name that can connect to a server offering A. Types ⊕i∈I{li : Ai} and Ni∈I{li : Ai}
are assigned to names that can select and offer a labelled choice, respectively. Then we have
the two modalities introduced in [5]. We use NA as the type of a (non-deterministic) session
that may produce a behaviour of type A. Dually, ⊕A denotes the type of a session that may
consume a behaviour of type A.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 15

[Tid]
[x↔ y] ⊢ x:A, y:A; Θ

[T1]
x.close ⊢ x : 1; Θ

P ⊢ ∆; Θ[T⊥]
x.close; P ⊢ x:⊥, ∆; Θ

P ⊢ ∆, y : A; Θ Q ⊢ ∆′, x : B; Θ[T⊗]
x(y).(P | Q) ⊢ ∆, ∆′, x : A⊗B; Θ

P ⊢ ∆, y : C, x : D; Θ[TO]
x(y).P ⊢ ∆, x : C O D; Θ

P ⊢w̃ : N∆, x : A; Θ[T⊕x
w̃
]

x.some
w̃

; P ⊢ w̃:N∆, x:⊕A; Θ
P ⊢ ∆, x : A; Θ[TNx

d]
x.some; P ⊢ ∆, x : NA; Θ

[TNx]
x.none ⊢ x : NA; Θ

P ⊢ N∆; Θ Q ⊢N∆; Θ[T⊕]
P ⊕Q ⊢ N∆; Θ

P ⊢ ∆, x : Ai; Θ[T⊕i]
x.li; P ⊢ ∆, x : ⊕i∈I{li : Ai}; Θ

Pi ⊢ ∆, x : Ai; Θ (∀i ∈ I)
[TN]

x.casei∈I{li : Pi} ⊢ ∆, x : Ni∈I{li : Ai}; Θ

P ⊢ ∆; x : A, Θ[T?]
P ⊢ ∆, x :?A; Θ

P ⊢ y : A; Θ[T!]
!x(y).P ⊢ x :!A; Θ

P ⊢∆, y : A; x : A, Θ[Tcopy]
x?(y).P ⊢ ∆; x : A, Θ

Figure 6 Typing rules for sπ.

The two endpoints of a session should be dual to ensure absence of communication errors.
The dual of a type A is denoted A. Duality corresponds to negation (·)⊥ in linear logic [5].

▶ Definition 21 (Duality). Duality on types is given by:

1 = ⊥ ⊥ = 1 A⊗B = A O B ⊕i∈I{li : Ai} = Ni∈I{li : Ai} ⊕A = NA

!A =?A ?A =!A A O B = A⊗B Ni∈I{li : Ai} = ⊕i∈I{li : Ai} NA = ⊕A

Judgements are of the form P ⊢ ∆; Θ, where P is a process, ∆ is the linear context, and Θ is
the unrestricted context. Both ∆ and Θ contain assignments of types to names, but satisfy
different substructural principles: while Θ satisfies weakening, contraction and exchange, ∆
only satisfies exchange. The empty context is denoted ‘·’. We write N∆ to denote that all
assignments in ∆ have a non-deterministic type, i.e., ∆ = w1:NA1, . . . , wn:NAn, for some
A1, . . . , An. The typing judgement P ⊢ ∆ corresponds to the logical sequent for classical
linear logic, which can be recovered by erasing processes and name assignments.

Typing rules for processes in Fig. 6 correspond to proof rules in linear logic; we discuss
some of them. Rule [Tid] interprets the identity axiom using the forwarder process. Rules [T1]
and [T⊥] type the process constructs for session termination. Rules [T⊗] and [TO] type
output and input of a name along a session, resp. The last four rules are used to type process
constructs related to non-determinism and failure. Rules [TNx

d] and [TNx] introduce a session
of type NA, which may produce a behaviour of type A: while the former rule covers the case
in which x : A is indeed available, the latter rule formalises the case in which x : A is not
available (i.e., a failure). Given a sequence of names w̃ = w1, . . . , wn, Rule [T⊕x

w̃
] accounts for

the possibility of not being able to consume the session x : A by considering sessions different
from x as potentially not available. Rule [T⊕] expresses non-deterministic choice of processes
P and Q that implement non-deterministic behaviours only. Finally, Rule [T⊕i] and [TN]
correspond, resp., to selection and branching: the former provides a selection of behaviours
along x as long as P is guarded with the i-th behaviour; the latter offers a labelled choice
where each behaviour Ai is matched to a corresponding Pi.

The type system enjoys type preservation, a result that follows from the cut elimination
property in linear logic; it ensures that the observable interface of a system is invariant under
reduction. The type system also ensures other properties for well-typed processes (e.g. global
progress, strong normalisation, and confluence); see [5] for details.

▶ Theorem 22 (Type Preservation [5]). If P ⊢ ∆; Θ and P −→ Q then Q ⊢ ∆; Θ.

16 Unrestricted Resources in Encoding Functions as Processes

4.2 uλ̂ ⊕: An Auxiliary Calculus With Sharing
To facilitate the encoding of uλ ⊕ into sπ, we define uλ̂ ⊕: an auxiliary calculus whose
constructs are inspired by the work of Gundersen et al. [10], Ghilezan et al. [8], and Kesner
and Lengrand [13]. The syntax of uλ̂ ⊕ only modifies the syntax of terms, which is defined
by the grammar below; variables x[∗], bags B, and expressions M are as in Definition 1.

(Terms) M, N, L ::= x[∗] | λx.(M [x̃← x]) | (M B) | M⟨|N/x|⟩ | MTU/xW

| failx̃ | M [x̃← x] | (M [x̃← x])⟨⟨B/x⟩⟩

We consider the sharing construct M [x̃ ← x] and two kinds of explicit substitutions: the
explicit linear substitution, written M⟨|N/x|⟩, and the explicit unrestricted substitution, written
MTU/xW. The term M [x̃← x] defines the sharing of variables x̃ occurring in M using the
linear variable x. We shall refer to x as sharing variable and to x̃ as shared variables. A linear
variable is only allowed to appear once in a term. Notice that x̃ can be empty: M [← x]
expresses that x does not share any variables in M . As in uλ ⊕, the term failx̃ explicitly
accounts for failed attempts at substituting the variables in x̃.

We summarise some requirements. In M [x̃ ← x], we require: (i) every xi ∈ x̃ occurs
exactly once in M and that (ii) xi is not a sharing variable. The occurrence of xi can appear
within the fail term failỹ, if xi ∈ ỹ. In the explicit linear substitution M⟨|N/x|⟩, we require:
the variable x has to occur in M ; x cannot be a sharing variable; and x cannot be in an
explicit linear substitution occurring in M ; all free linear occurrences of x in M are bound. In
the explicit unrestricted substitution MTU/xW, we require: all free unrestricted occurrences
of x in M are bound; x cannot be in an explicit unrestricted substitution occurring in M .
This way, e.g., M ′⟨|L/x|⟩⟨|N/x|⟩ and M ′⟨|U ′/x|⟩⟨|U/x|⟩ are not valid terms in uλ̂ ⊕.

The following congruence will be important when proving encoding correctness.

▶ Definition 23. The congruence ≡λ for uλ̂ ⊕ on terms and expressions is given by the
identities below.

MTU/xW ≡λ M, x ̸∈M

(MB)⟨|N/x|⟩ ≡λ (M⟨|N/x|⟩)B, x ̸∈ fv(B)
(MB)TU/xW ≡λ (MTU/xW)B, x ̸∈ fv(B)

(MA)[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)A, xi ∈ x̃⇒ xi ̸∈ fv(A)

M [ỹ ← y]⟨⟨A/y⟩⟩[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)[ỹ ← y]⟨⟨A/y⟩⟩,
xi ∈ x̃⇒ xi ̸∈ fv(A),
yi ∈ ỹ ⇒ yi ̸∈ fv(B)

M⟨|N2/y|⟩⟨|N1/x|⟩ ≡λ M⟨|N1/x|⟩⟨|N2/y|⟩, x ̸∈ fv(N2), y /∈ fv(N1)
MTU2/yWTU1/xW ≡λ MTU1/xWTU2/yW, x ̸∈ fv(U2), y /∈ fv(U1)

C[M] ≡λ C[M ′], with M ≡λ M ′

D[M] ≡λ D[M′], with M ≡λ M′

The first rule states that we may remove unneeded unrestricted substitutions when the
variable in concern does not appear within the term. The next three identities enforce that
bags can always be moved in and out of all forms of explicit substitution, which are useful
manipulate expressions and to form a redex for Rule [R : Beta]. The other rules deal with
permutation of explicit substitutions and contextual closure.

Well-formedness for uλ̂ ⊕, based on intersection types, is defined as in § 3; see App. D.

4.3 Encoding uλ ⊕ into uλ̂ ⊕

We define an encoding L · M◦ from well-formed terms in uλ ⊕ into uλ̂ ⊕. This encoding relies
on an intermediate encoding L · M• on uλ ⊕-terms.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 17

LxM• = x Lx[i]M• = x[i] L1M• = 1

L1!M• = 1! Lfailx̃M• = failx̃ LM BM• = LMM• LBM•

L * M +! M• = *M+! L * M + ·CM• = *LMM• + ·LCM• LC ⋆ UM• = LCM• ⋆ LUM•

LU ⋄ V M• = U ⋄ V LM⟨|N/x|⟩M• = LMM•⟨|LNM•/x|⟩ LMTU/xWM• = LMM•TLUM•/xW

Lλx.MM• = λx.(LM⟨x1, · · · , xn/x⟩M•[x1, · · · , xn ← x]) #(x, M) = n, each xi is fresh

LM⟨⟨C ⋆ U/x⟩⟩M• =

∑

Ci∈PER(LCM•)

LM⟨x̃/x⟩M•⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(k)/xk|⟩TU/xW, if #(x, M) = size(C) = k

LM⟨x1, · · · , xk/x⟩M•[x1, · · · , xk ← x]⟨⟨LC ⋆ UM•
/x⟩⟩, if #(x, M) = k ≥ 0

Figure 7 Auxiliary Encoding: uλ ⊕ into uλ̂ ⊕

▶ Notation 5. Given a term M such that #(x, M) = k and a sequence of pairwise
distinct fresh variables x̃ = x1, . . . , xk we write M⟨x̃/x⟩ or M⟨x1, · · · , xk/x⟩ to stand for
M⟨x1/x⟩ · · · ⟨xk/x⟩, i.e., a simultaneous linear substitution whereby each distinct linear occur-
rence of x in M is replaced by a distinct xi ∈ x̃. Notice that each xi has the same type as
x. We use (simultaneous) linear substitutions to force all bound linear variables in uλ ⊕ to
become shared variables in uλ̂ ⊕.

▶ Definition 24 (From uλ ⊕ to uλ̂ ⊕). Let M ∈ uλ ⊕. Suppose Θ; Γ |= M : τ , with dom(Γ) =
lfv(M) = {x1, · · · , xk} and #(xi, M) = ji. We define LMM◦ as

LMM◦ = LM⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M•[x̃1 ← x1] · · · [x̃k ← xk]

where x̃i = xi1 , · · · , xji and the encoding L ·M• : uλ ⊕ → uλ̂ ⊕ is defined in Fig. 7 on uλ ⊕-terms.
The encoding L · M◦ extends homomorphically to expressions.

The encoding L·M◦ converts n occurrences of x in a term into n distinct variables x1, . . . , xn.
The sharing construct coordinates them by constraining each to occur exactly once within a
term. We proceed in two stages. First, we share all linear free linear variables using L · M◦:
this ensures that free variables are replaced by shared variables which are then bound by
the sharing construct. Second, we apply the encoding L · M• on the corresponding term. The
encoding is presented in Fig. 7: L · M• maintains x[i] unaltered, and acts homomorphically over
concatenation of bags and explicit substitutions. The encoding renames bound variables with
bound shared variables. As we will see, this will enable a tight operational correspondence
result with sπ. In App. E we establish the correctness of L · M◦.

▶ Example 25. We apply the encoding L · M• in some of the uλ ⊕-terms from Example 3: for
simplicity, we assume that N and U have no free variables.

L(λx.x) * N + ⋆UM• = Lλx.xM•L * N + ⋆UM• = λx.x1[x1 ← x] * LNM• + ⋆LUM•

L(λx.x[1])1 ⋆ *N +! ⋄UM• = L(λx.x[1]M•L1 ⋆ *N +! ⋄UM• = (λx.x[1][← x])1 ⋆ *LNM• +! ⋄LUM•

4.4 Encoding uλ̂ ⊕ into sπ
We now define our encoding of uλ̂ ⊕ into sπ, and establish its correctness.

▶ Notation 6. To help illustrate the behaviour of the encoding, we use the names x, xℓ, and
x! to denote three distinct channel names: while xℓ is the channel that performs the linear
substitution behaviour of the encoded term, channel x! performs the unrestricted behaviour.

18 Unrestricted Resources in Encoding Functions as Processes

▶ Definition 26 (From uλ̂ ⊕ into sπ: Expressions). Let u be a name. The encoding J · Ku :
uλ̂ ⊕ → sπ is defined in Fig. 8.

Every (free) variable x in an uλ̂ ⊕ expression becomes a name x in its corresponding sπ
process. As customary in encodings of λ into π, we use a name u to provide the behaviour of
the encoded expression. In our case, u is a non-deterministic session: the encoded expression
can be effectively available or not; this is signalled by prefixes u.some and u.none, respectively.

We discuss the most salient aspects of the encoding in Fig. 8.

While linear variables are encoded as in [17], the encoding of an unrestricted variable x[j],
not treated in [17], is much more interesting: it first connects to a server along channel x

via a request x!?(xi) followed by a selection on xi.lj , which takes the j-th branch.

The encoding of λx.M [x̃← x] confirms its behaviour first followed by the receiving of a
channel x. The channel x provides a linear channel xℓ and an unrestricted channel x! for
dedicated substitutions of the linear and unrestricted bag components.

We encode M (C ⋆ U) as a non-deterministic sum: an application involves a choice in the
order in which the elements of C are substituted.

The encoding of C ⋆ U synchronises with the encoding of λx.M [x̃← x]. The channel xℓ

provides the linear behaviour of the bag C while x! provides the behaviour of U ; this
is done by guarding the encoding of U with a server connection such that every time a
channel synchronises with !x!(xi) a fresh copy of U is spawned.

The encoding of *M + ·C synchronises with the encoding of M [x̃← x], just discussed.
The name yi is used to trigger a failure in the computation if there is a lack of elements
in the encoding of the bag.

The encoding of M [x̃← x] first confirms the availability of the linear behaviour along
xℓ. Then it sends a name yi, which is used to collapse the process in the case of a failed
reduction. Subsequently, for each shared variable, the encoding receives a name, which
will act as an occurrence of the shared variable. At the end, a failure prefix on x is used
to signal that there is no further information to send over.

The encoding of U synchronises with the last half encoding of x[j]; the name xi selects
the j-th term in the unrestricted bag.

The encoding of M⟨|N/x|⟩ is the composition of the encodings of M and N , where we
await a confirmation of a behaviour along the variable that is being substituted.

MTU/xW is encoded as the composition of the encoding of M and a server guarding the
encoding of U : in order for JMKu to gain access to JUKxi it must first synchronise with
the server channel x! to spawn a fresh copy of U .

The encoding of M + N homomorphically preserves non-determinism. Finally, the encod-
ing of failx1,··· ,xk simply triggers failure on u and on each of x1, · · · , xk.

▶ Example 27. [Cont. Example 3] We illustrate the encoding J · K on the uλ̂ ⊕-terms/bags
occurring in M1 = λx.x1[x1 ← x](*LNM• + ⋆LUM•) as below:

Jλx.x1[x1 ← x]Kv = v.some; v(x).x.some; x(xℓ).x(x!).x[]; Jx1[x1 ← x]Kv

J * LNM• + ⋆LUM•Kx = x.somelfv(*LNM•+); x(xℓ).(JLNM•Kxℓ | x(x!).(!x!(xi).JLUM•Kxi | x[]))

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 19

JxKu = x.some; [x↔ u]
Jx[j]Ku = x!?(xi).xi.lj ; [xi ↔ u]

Jλx.M [x̃← x]Ku = u.some; u(x).x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku

JM [x̃← x]⟨⟨C ⋆ U/x⟩⟩Ku =
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku | JCi ⋆ UKx)

JM(C ⋆ U)Ku =
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

JC ⋆ UKx = x.somelfv(C); x(xℓ).
(
JCKxℓ | x(x!).(!x!(xi).JUKxi | x.close)

)
J*M+ · CKxℓ = xℓ.somelfv(*M+·C); xℓ(yi).xℓ.someyi,lfv(*M+·C); xℓ.some; xℓ(xi).

(xi.somelfv(M); JMKxi | JCKxℓ | yi.none)
J1Kxℓ = xℓ.some∅; xℓ(yn).(yn.some; yn.close | xℓ.some∅; xℓ.none)
J1!Kx = x.none

J * N +! Kx = JNKx

JUKx = x.caseUi∈U{li : JUiKx}
JM⟨|N/x|⟩Ku = (νx)(JMKu | x.somelfv(N); JNKx)
JMTU/xWKu = (νx!)(JMKu | !x!(xi).JUKxi)
JM [← x]Ku = xℓ.some.xℓ(yi).(yi.someu,lfv(M); yi.close; JMKu | xℓ.none)

JM [x1, · · · , xn ← x]Ku = xℓ.some.xℓ(y1).
(
y1.some∅; y1.close; 0 |

xℓ.some; xℓ.someu,(lfv(M)\x1,··· ,xn); xℓ(x1).JM [x2, · · · , xn ← x]Ku

)
JM + NKu = JMKu ⊕ JNKu

Jfailx1,··· ,xkKu = u.none | x1.none | · · · | xk.none

Figure 8 Encoding uλ̂ ⊕ into sπ (cf. Def. 26).

JLM1M•Ku = Jλx.x1[x1 ← x] * LNM• + ⋆LUM•Ku

= (νv)(Jλx.x1[x1 ← x]Kv | v.someu,lfv(LNM•); v(x).([v ↔ u] | J * LNM• + ⋆LUM•Kx))

= (νv)(v.some; v(x).x.some; x(xℓ).x(x!).x[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 |

xℓ.some; xℓ.someu; xℓ(x1).xℓ.some.xℓ(y2).(y2.someu,x1 ; y2[]; Jx1Kv | xℓ.none)) |
v.someu,lfv(LNM•); v(x).([v ↔ u] |
x.somelfv(LNM•); x(xℓ).(xℓ.somelfv(LNM•); xℓ.somey1,lfv(*LNM•+);

xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none | xℓ.some∅; xℓ(y2).
(y2.some; y2[] | xℓ.some∅; xℓ.none)) | x(x!).(!x!(xi).JLUM•Kxi

| x[]))))

We now encode intersection types (for uλ̂ ⊕) into session types (for sπ).

▶ Definition 28 (From uλ̂ ⊕ into sπ: Types). The translation J·K in Figure 9 extends as follows
to a context Γ = x1:σ1, · · · , xm:σm, v1:π1, · · · , vn:πn and a context Θ = x!

1:η1, · · · , x!
k:ηk:

JΓK = x1 : NJσ1K, · · · , xm : NJσmK, v1 : Jπ1K(σ,i1), · · · , vn : JπnK(σ,in)

JΘK = x!
1 : Jη1K, · · · , x!

k : JηkK

This encoding formally expresses how non-deterministic session protocols (typed with ‘N’)
capture linear and unrestricted resource consumption in uλ̂ ⊕. Notice that the encoding of
the multiset type π depends on two arguments (a strict type σ and a number i ≥ 0) which are
left unspecified above. This is crucial to represent failures in uλ̂ ⊕ as typable processes in sπ.

20 Unrestricted Resources in Encoding Functions as Processes

JunitK = N1
JηK = &ηi∈η{li; JηiK}

J(σk, η)→ τK = N(J(σk, η)K(σ,i) O JτK)

J(σk, η)K(σ,i) = ⊕((JσkK(σ,i))⊗ ((!JηK)⊗ (1)))

Jσ ∧ πK(σ,i) = N((⊕⊥)⊗ (N⊕ ((NJσK) O (JπK(σ,i)))))
= ⊕((N1) O (⊕N((⊕JσK)⊗ (JπK(σ,i)))))

JωK(σ,i) =

{
N((⊕⊥)⊗ (N⊕⊥))) if i = 0
N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK(σ,i−1))))) if i > 0

Figure 9 Encoding of intersection types into session types (cf. Def. 28)

For instance, given (σj , η)→ τ and (σk, η), the well-formedness rule for application admits
a mismatch (j ̸= k, cf. Rule [FS:app] in Fig. 14, App. D). In our proof of type preservation,
the two arguments of the encoding are instantiated appropriately. Notice also how the
client-server behaviour of unrestricted resources appears as ‘!JηK’ in the encoding of the tuple
type (σk, η). With our encodings of expressions and types in place, we can now define our
encoding of judgements:

▶ Definition 29. If M is an uλ̂ ⊕ expression such that Θ; Γ |= M : τ then we define the
encoding of the judgement to be: JMKu ⊢ JΓK, u : JτK; JΘK.

The correctness of our encoding J · Ku : uλ ⊕ → sπ, stated in Theorem 31 (and detailed
in App. F), relies on a notion of success for both uλ ⊕ and sπ, given by the ✓ construct:

▶ Definition 30. We extend the syntax of terms for uλ̂ ⊕ and processes for sπ with ✓:
(In uλ̂ ⊕) M ⇓✓ iff there exist M1, · · · , Mk such that M −→∗ M1 + · · · + Mk and
head(M ′

j) = ✓, for some j ∈ {1, . . . , k} and term M ′
j such that Mj ≡λ M ′

j.
(In sπ) P ⇓✓ holds whenever there exists a P ′ such that P −→∗ P ′ and P ′ contains an
unguarded occurrence of ✓ (i.e., an occurrence that does not occur behind a prefix).

We now state operational correctness. Fig. 10 illustrates the relation between completeness
and soundness that the encoding satisfies: solid arrows denote reductions assumed, dashed
arrows denote the application of J · Ku, and dotted arrows denote the existing reductions that
can be implied from the results.

We remark that since uλ̂ ⊕ satisfies the diamond property, it suffices to consider complete-
ness based on a single reduction (N −→M). Soundness uses the congruence ≡λ in Def. 23.
We write N −→≡λ

N ′ iff N ≡λ N1 −→ N2 ≡λ N ′, for some N1, N2. Then, −→∗
≡λ

is the
reflexive, transitive closure of −→≡λ

. For success sensitivity, we decree J✓Ku = ✓. We have:

▶ Theorem 31 (Operational Correctness). Let N and M be well-formed uλ̂ ⊕ closed expressions.
(a) (Type Preservation) Let B be a bag. We have:

(i) If Θ; Γ |= B : (σk, η) then JBKu |= JΓK, u : J(σk, η)K(σ,i); JΘK.
(ii) If Θ; Γ |= M : τ then JMKu |= JΓK, u : JτK; JΘK.

(b) (Completeness) If N −→M then there exists Q such that JNKu −→∗ Q ≡λ JMKu.
(c) (Soundness) If JNKu −→∗ Q then Q −→∗ Q′, N −→∗

≡λ
N′ and JN′Ku ≡ Q′, for some

Q′,N′.
(d) (Success Sensitivity) M ⇓✓ if, and only if, JMKu ⇓✓.

Proof. Below we illustrate the most interesting case of the proof of soundness. Detailed
proof can be found in App. F. ◀

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21

Operational Completeness

uλ̂ ⊕: N M

sπ: JNKu Q ≡ JMKu
*

J · Ku J · KuThm 31 (b)

Operational Soundness

N N′*

JNKu Q Q′ ≡ JN′Ku

J · Ku J · KuThm 31(c)

* *

≡λ

Figure 10 An overview of operational soundness and completeness for J · Ku.

Proof. All items are proven by structural induction; a detailed proof can be found in App. F.
Below we present the most interesting case in the proof of soundness: the case when
N = M(C ⋆ U). Then,

JNKu = JM(C ⋆ U)Ku =
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)).

The proof then proceeds by induction on the number of reduction steps k that can be
taken from JNKu, i.e, JNKu −→k Q. We will consider the case when k ≥ 1, where for some
process R and non-negative integers n, m such that k = n + m, we have the following:

JNKu −→m
⊕

Ci∈PER(C)

(νv)(R | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)) −→n Q

There are several cases to analyse depending on the values of m and n, and the shape of M . We
consider m = 0, n ≥ 1 and M = (λx.(M ′[x̃← x]))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW,
where p, q ≥ 0. Then, JNKu can perform the following reduction:

JNKu −→∗
⊕

Ci∈PER(C)

(νỹ, z̃, x)(x.some; x(xℓ).x(x!).x[]; JM ′[x̃← x]Ku | Q′′ | JCi ⋆ UKx) (:= Q3)

where Q′′ defines the encoding of explicit substitutions within the encoded subterm M .
Notice that:

N = (λx.(M ′[x̃← x]))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW(C ⋆ U)
≡λ (λx.(M ′[x̃← x])(C ⋆ U))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW

−→M ′[x̃← x]⟨⟨(C ⋆ U)/x⟩⟩⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW = M

where the congruence holds assuming the necessary α-renaming of variables. Finally, one
can verify that JMKu = Q3, and the result follows. ◀

▶ Example 32. Recall again term M1 from Example 3. It can be shown that LM1M• −→∗

LNM•TLUM•/x!W. To illustrate operational completeness, we can verify preservation of reduc-
tion, via J · K: reductions below use the rules for sπ in Figure 5—see Figure 11.

5 Concluding Remarks

Summary We have extended the line of work we developed in [17], on resource λ-calculi
with firm logical foundations via typed concurrent processes. We presented uλ ⊕, a resource

22 Unrestricted Resources in Encoding Functions as Processes

JLM1M•K =

(νv)(v.some; v(x).x.some; x(xℓ).x(x!).x[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 |

xℓ.some; xℓ.someu; xℓ(x1).xℓ.some.xℓ(y2).(y2.someu,x1 ; y2.[]; Jx1Kv | xℓ.none)) |

v.someu,lfv(LNM•); v(x).([v ↔ u] | x.somelfv(LNM•); x(xℓ).(xℓ.somelfv(LNM•); xℓ(y1).

xℓ.somey1,lfv(*LNM•+); xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none | xℓ.some∅;

xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | x(x!).(!x!(xi).JLUM•Kxi | x[]))))

−→3 (νx)(x.some; x(xℓ).x(x!).x[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 | xℓ.some; xℓ.someu;

xℓ(x1).xℓ.some.xℓ(y2).(y2.someu,x1 ; y2[]; Jx1Ku | xℓ.none)) | (x.somelfv(LNM•); x(xℓ).

(xℓ.somelfv(*LNM•+); xℓ(y1).xℓ.somey1,lfv(*LNM•+); xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 |

y1.none | xℓ.some∅; xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | x(x!).(!x!(xi).JLUM•Kxi | x[]))))

−→2 (νx, xℓ)(x(x!).x.[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 | xℓ.some; xℓ.someu; xℓ(x1).

xℓ.some.xℓ(y2).(y2.someu,x1 ; y2[]; Jx1Ku | xℓ.none)) | (xℓ.somelfv(LNM•); xℓ(y1).

xℓ.somey1,lfv(LNM•); xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none | xℓ.some∅; xℓ(y2).

(y2.some; y2[] | xℓ.some∅; xℓ.none)) | x(x!).(!x!(xi).JLUM•Kxi | x[]))))

−→ (νx, xℓ, x!)(x[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 | xℓ.some; xℓ.someu; xℓ(x1).xℓ.some.

xℓ(y2).(y2.someu,x1 ; y2[]; Jx1Ku | xℓ.none)) | (xℓ.somelfv(LNM•); xℓ(y1).xℓ.somey1,lfv(LNM•);

xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none |

xℓ.some∅; xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | !x!(xi).JLUM•Kxi | x[])))

−→ (νxℓ, x!)(xℓ.some.xℓ(y1).(y1.some∅; y1.[]; 0 | xℓ.some; xℓ.someu; xℓ(x1).

xℓ.some.xℓ(y2).(y2.someu,x1 ; y2.[]; Jx1Ku | xℓ.none)) | (xℓ.somelfv(LNM•); xℓ(y1).

xℓ.somey1,lfv(LNM•); xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none |

xℓ.some∅; xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | !x!(xi).JLUM•Kxi)))

−→ (νxℓ, y1, x!)(y1.some∅; y1[]; 0 | xℓ.some; xℓ.someu; xℓ(x1).xℓ.some.xℓ(y2).

(y2.someu,x1 ; y2[]; Jx1Ku | xℓ.none) | (xℓ.somey1,lfv(LNM•); xℓ.some; xℓ(x1).(x1.somelfv(LNM•);

JLNM•Kx1 | y1.none | xℓ.some∅; xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | !x!(xi).JLUM•Kxi))

−→∗ (νx1, x!)(x1.some; [x1 ↔ u] | x1.somelfv(LNM•); JLNM•Kx1 | !x
!(xi).JLUM•Kxi)

−→∗ (νx!)(JLNM•Ku | !x!(xi).JLUM•Kxi)

= JLNM•TLUM•/x!WKu

Figure 11 Illustrating operational correspondence, following Example 32.

calculus with non-determinism and explicit failures, with dedicated treatment for linear
and unrestricted resources. By means of examples, we illustrated the expressivity, (lazy)
semantics, and design decisions underpinning uλ ⊕, and introduced a class of well-formed
expressions based on intersection types, which includes fail-prone expressions. To bear witness
to the logical foundations of uλ ⊕, we defined and proved correct a typed encoding into the
concurrent calculus sπ, which subsumes the one in [17]. We plan to study key properties for
uλ ⊕ (such as solvability and normalisation) by leveraging our typed encoding into sπ.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 23

Related Work With respect to previous resource calculi, a distinctive feature of uλ ⊕ is its
support of explicit failures, which may arise depending on the interplay between (i) linear
and unrestricted occurrences of variables in a term and (ii) associated resources in the bag.
This feature allows uλ ⊕ to express variants of usual λ-terms (I, ∆, Ω) not expressible in
other resource calculi.

Related to uλ ⊕ is Boudol’s work on a λ-calculus in which multiplicities can be infinite [1, 3].
An intersection type system is used to prove adequacy with respect to a testing semantics.
However, failing behaviours as well as typability are not explored. Multiplicities can be
expressed in uλ ⊕: a linear resource is available m times when the linear bag contains m

copies of it; the term fails if the corresponding number of linear variables is different from m.
Also related is the resource λ-calculus by Pagani and Ronchi della Rocca [16], which

includes linear and reusable resources; the latter are available in multisets, also called bags.
In their setting, M [N !] denotes an application of a term M to a resource N that can be
used ad libitum. Standard terms such as I, ∆ and Ω are expressed as λx.x, ∆ := λx.x[x!],
and Ω := ∆[∆!], respectively; different variants are possible but cannot express the desired
behaviour. A lazy reduction semantics is based on baby and giant steps: whereas the first
consume one resource at each time, the second comprises several baby steps; combinations of
the use of resources (by permuting resources in bags) are considered. A (non-idempotent)
intersection type system is proposed: normalisation and a characterisation of solvability are
investigated. Unlike our work, encodings into the π-calculus are not explored in [16].

References

1 Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor,
CONCUR ’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany,
August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science, pages 1–6.
Springer, 1993. doi:10.1007/3-540-57208-2_1.

2 Gérard Boudol and Cosimo Laneve. The discriminating power of multiplicities in the lambda-
calculus. Inf. Comput., 126(1):83–102, 1996. doi:10.1006/inco.1996.0037.

3 Gérard Boudol and Cosimo Laneve. lambda-calculus, multiplicities, and the pi-calculus. In
Proof, Language, and Interaction, Essays in Honour of Robin Milner, pages 659–690, 2000.

4 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

5 Luís Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In Hong-
seok Yang, editor, Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-
ings, volume 10201 of Lecture Notes in Computer Science, pages 229–259. Springer, 2017.
doi:10.1007/978-3-662-54434-1_9.

6 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,
France, August 31-September 3, 2010. Proceedings, pages 222–236, 2010. doi:10.1007/
978-3-642-15375-4_16.

7 Maurizio Dominici, Simona Ronchi Della Rocca, and Paolo Tranquilli. Standardization in re-
source lambda-calculus. In Proceedings 2nd International Workshop on Linearity, LINEARITY
2012, Tallinn, Estonia, 1 April 2012., pages 1–11, 2012. doi:10.4204/EPTCS.101.1.

8 Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, and Silvia Likavec. Intersection types for
the resource control lambda calculi. In Theoretical Aspects of Computing - ICTAC 2011 -
8th International Colloquium, Johannesburg, South Africa, August 31 - September 2, 2011.
Proceedings, pages 116–134, 2011. doi:10.1007/978-3-642-23283-1_10.

https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1006/inco.1996.0037
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4204/EPTCS.101.1
https://doi.org/10.1007/978-3-642-23283-1_10

24 Unrestricted Resources in Encoding Functions as Processes

9 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9):1031–1053, 2010. doi:10.1016/j.ic.2010.05.002.

10 Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda calculus: A typed
lambda-calculus with explicit sharing. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 311–320,
2013. doi:10.1109/LICS.2013.37.

11 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

12 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

13 Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Inf. Comput.,
205(4):419–473, 2007. doi:10.1016/j.ic.2006.08.008.

14 Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. On the relative expressiveness of
higher-order session processes. Inf. Comput., 268, 2019. doi:10.1016/j.ic.2019.06.002.

15 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

16 Michele Pagani and Simona Ronchi Della Rocca. Solvability in resource lambda-calculus. In
C.-H. Luke Ong, editor, Foundations of Software Science and Computational Structures, 13th
International Conference, FOSSACS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, volume 6014 of Lecture Notes in Computer Science, pages 358–373. Springer,
2010. doi:10.1007/978-3-642-12032-9_25.

17 Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez. Non-deterministic
functions as non-deterministic processes. In Naoki Kobayashi, editor, 6th International
Conference on Formal Structures for Computation and Deduction, FSCD 2021, July 17-24,
2021, Buenos Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 21:1–21:22.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.21.

18 Philip Wadler. Propositions as sessions. In Peter Thiemann and Robby Bruce Findler, editors,
ACM SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 273–286. ACM, 2012. doi:10.1145/2364527.2364568.

https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1109/LICS.2013.37
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1016/j.ic.2006.08.008
https://doi.org/10.1016/j.ic.2019.06.002
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/978-3-642-12032-9_25
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://doi.org/10.1145/2364527.2364568

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 25

Contents

1 Introduction 1

2 Unrestricted Resources, Non-Determinism, and Failure 3

3 Intersection Types 9

4 A Translation into Processes 13
4.1 Session-Typed Calculus . 13
4.2 An Auxiliary Calculus With Sharing . 16
4.3 First Step . 16
4.4 Second Step . 17

5 Concluding Remarks 21

A Appendix to Section 2 26
A.1 Diamond Property for uλ ⊕ . 26

B Appendix to Section 3 26
B.1 Examples . 31

C Appendix to Subsection 4.1 32

D Appendix to Subsection 4.2 33
D.1 Well-formedness rules for uλ̂ ⊕ . 35

E Appendix to Subsection 4.3 42
E.1 Encodability Criteria . 42
E.2 Correctness of L · M◦ . 43
E.3 Success Sensitiveness of L · M◦ . 51

F Appendix to Subsection 4.4 53
F.1 Type Preservation . 53
F.2 Operational Correspondence: Completeness and Soundness 63

F.2.1 Completeness . 64
F.2.2 Soundness . 68

F.3 Success Sensitiveness of J · Ku . 78

26 Unrestricted Resources in Encoding Functions as Processes

A Appendix to Section 2

A.1 Diamond Property for uλ ⊕

▶ Proposition 33 (Diamond Property for uλ ⊕). For all N, N1, N2 in uλ ⊕ s.t. N −→ N1,
N −→ N2 with N1 ̸= N2 then ∃M s.t. N1 −→M, N2 −→M.

Proof. We give a short argument to convince the reader of this. Notice that an expression
can only perform a choice of reduction steps when it is a nondeterministic sum of terms in
which multiple terms can perform independent reductions. For simplicity sake we will only
consider an expression N that consist of two terms where N = N + M . We also have that
N −→ N ′ and M −→M ′. Then we let N1 = N ′ + M and N2 = N + M ′ by the [R : ECont]
rules. Finally we prove that M exists by letting M = N ′ + M ′. ◀

B Appendix to Section 3

Here we prove subject reduction (SR) for uλ ⊕ (Theorem 17). It follows from two substitution
lemmas: one for substituting a linear variable (Lemma 34) and another for an unrestricted
variable (Lemma 35). Proofs of both lemmas are standard, by structural induction; we give
a complete proof of SR in Theorem 36.

▶ Lemma 34 (Linear Substitution Lemma for uλ ⊕). If Θ; Γ, x : σ |= M : τ , head(M) = x,
and Θ; ∆ |= N : σ then Θ; Γ, ∆ |= M{|N/x|}.

Proof. By structural induction on M with head(M) = x. There are three cases to be
analyzed:

1. M = x.
In this case, Θ; x : σ |= x : σ and Γ = ∅. Observe that x{|N/x|} = N , since Θ; ∆ |= N : σ,
by hypothesis, the result follows.

2. M = M ′ B.
In this case, head(M ′ B) = head(M ′) = x, and one has the following derivation:

Θ; Γ1, x : σ |= M : (δj , η)→ τ Θ; Γ2 |= B : (δk, ϵ) η ∝ ϵ
[F:app]

Θ; Γ1, Γ2, x : σ |= M B : τ

where Γ = Γ1, Γ2, δ is a strict type and j, k are non-negative integers, possibly different.
By IH, we get Θ; Γ1, ∆ |= M ′{|N/x|} : (δj , η)→ τ , which gives the following derivation:

Θ; Γ1, ∆ |= M ′{|N/x|} : (δj , η)→ τ Θ; Γ2 |= B : (δk, ϵ) η ∝ ϵ
[F:app]

Θ; Γ1, Γ2, ∆ |= (M ′{|N/x|})B : τ

Therefore, from Def. 7, one has Θ; Γ1, Γ2, ∆ |= (M ′{|N/x|})B : τ , and the result follows.
3. M = M ′⟨⟨B/y⟩⟩.

In this case, head(M ′⟨⟨B/y⟩⟩) = head(M ′) = x, with x ̸= y, and one has the following
derivation:

Θ, y! : η; Γ1, ŷ : δk, x : σ |= M : τ Θ; Γ2 |= B : (δj , ϵ) η ∝ ϵ
[F:ex-sub]

Θ; Γ1, Γ2, x : σ |= M ′⟨⟨B/y⟩⟩ : τ

where Γ = Γ1, Γ2, δ is a strict type and j, k are positive integers. By IH, we get
Θ, y! : η; Γ1, ŷ : δk, ∆ |= M ′{|N/x|} : τ and

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 27

Θ, y! : η; Γ1, ŷ : δk, ∆ |= M ′{|N/x|} : τ Θ; Γ2 |= B : (δj , ϵ) η ∝ ϵ
[F:ex-sub]

Θ; Γ1, Γ2, ∆ |= M ′{|N/x|}⟨⟨B/y⟩⟩ : τ

From Def. 7, M ′⟨⟨B/y⟩⟩{|N/x|} = M ′{|N/x|}⟨⟨B/y⟩⟩, therefore, Θ; Γ, ∆ |= (M ′⟨⟨B/y⟩⟩){|N/x|} :
τ and the result follows. ◀

▶ Lemma 35 (Unrestricted Substitution Lemma for uλ ⊕). If Θ, x! : η; Γ |= M : τ , head(M) =
x[i], ηi = σ, and Θ; · |= N : σ then Θ, x! : η; Γ |= M{|N/x[i]|}.

Proof. By structural induction on M with head(M) = x[i]. There are three cases to be
analyzed:

1. M = x[i].
In this case,

[F:varℓ]
Θ, x! : η; x : ηi |= x : σ

[F:var!]
Θ, x! : η; · |= x[i] : σ

and Γ = ∅. Observe that x[i]{|N/x[i]|} = N , since Θ, x! : η; Γ |= M{|N/x[i]|}, by
hypothesis, the result follows.

2. M = M ′ B.
In this case, head(M ′ B) = head(M ′) = x[i], and one has the following derivation:

Θ, x! : η; Γ1 |= M : (δj , ϵ)→ τ Θ, x! : σ; Γ2 |= B : (δk, ϵ′) ϵ ∝ ϵ′
[F:app]

Θ, x! : η; Γ1, Γ2 |= M B : τ

where Γ = Γ1, Γ2, δ is a strict type and j, k are non-negative integers, possibly different.
By IH, we get Θ, x! : η; Γ1 |= M ′{|N/x[i]|} : (δj , ϵ) → τ , which gives the following
derivation:

Θ, x! : η; Γ1 |= M ′{|N/x[i]|} : (δj , ϵ)→ τ Θ, x! : η; Γ2 |= B : (δk, ϵ′) ϵ ∝ ϵ′
[F:app]

Θ, x! : η; Γ1, Γ2 |= (M ′{|N/x[i]|})B : τ

From Def. 7, one has Θ, x! : η; Γ1, Γ2 |= (M ′{|N/x[i]|})B : τ , and the result follows.
3. M = M ′⟨⟨B/y⟩⟩.

In this case, head(M ′⟨⟨B/y⟩⟩) = head(M ′) = x[i], with x ̸= y, and one has the following
derivation:

Θ, y! : ϵ, x : η; Γ1, ŷ : δk |= M : τ Θ, x : η; Γ2 |= B : (δj , ϵ′) ϵ ∝ ϵ′
[F:ex-sub]

Θ, x : η; Γ1, Γ2 |= M ′⟨⟨B/y⟩⟩ : τ

where Γ = Γ1, Γ2, δ is a strict type and j, k are positive integers. By IH, we get
Θ, y! : ϵ, x : η; Γ1, ŷ : δk |= M ′{|N/x[i]|} : τ and

Θ, y! : ϵ, x : η; Γ1, ŷ : δk, |= M ′{|N/x[i]|} : τ Θ, x : σ; Γ2 |= B : (δj , ϵ′) ϵ ∝ ϵ′
[F:ex-sub]

Θ, x : η; Γ1, Γ2 |= M ′{|N/x[i]|}⟨⟨B/y⟩⟩ : τ

Then, M ′⟨⟨B/y⟩⟩{|N/x[i]|} = M ′{|N/x[i]|}⟨⟨B/y⟩⟩, and the result follows.

◀

▶ Theorem 36 (SR in uλ ⊕). If Θ; Γ |= M : τ and M −→M′ then Θ; Γ |= M′ : τ .

28 Unrestricted Resources in Encoding Functions as Processes

Proof. By structural induction on the reduction rules. We proceed by analysing the rule
applied in M. There are seven cases:

1. Rule [R : Beta].
Then M = (λx.M)B −→M ⟨⟨B/x⟩⟩ = M′. Since Θ; Γ |= M : τ , one has the derivation:

Θ, x! : η; Γ′, x̂ : σj |= M : τ
[F:abs]

Θ; Γ′ |= λx.M : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:app]

Θ; Γ′, ∆ |= (λx.M)B : τ

for Γ = Γ′, ∆. Notice that

Θ, x! : η; Γ′, x̂ : σj |= M : τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:ex-sub]

Θ; Γ, ∆ |= M⟨⟨B/x⟩⟩ : τ

Therefore, Θ; Γ |= M′ : τ and the result follows.
2. Rule [R : Fetchℓ].

Then M = M ⟨⟨C ⋆ U/x⟩⟩, where C = *N1+ · · · · · *Nk+ , k ≥ 1, #(x, M) = k and
head(M) = x. The reduction is as:

head(M) = x C = *N1+ · · · · · *Nk+ , k ≥ 1 #(x, M) = k
[R : Fetchℓ]

M ⟨⟨C ⋆ U/x⟩⟩ −→M{|N1/x|}⟨⟨(C \N1) ⋆ U/x⟩⟩+ · · ·+ M{|Nk/x|}⟨⟨(C \Nk) ⋆ U/x⟩⟩
To simplify the proof we take k = 2, as the case k > 2 is similar. Therefore, c = *N1+·*N2+

Θ, x! : η; Γ′, x̂ : σ2 |= M : τ

Θ; · |= U : ϵ

Π
Θ; ∆ |= *N1+ · *N2+ : σ2

[F:bag]
Θ; ∆ |= C ⋆ U : (σ2, ϵ) η ∝ ϵ

[F:ex-sub]
Θ; Γ′, ∆ |= M⟨⟨C ⋆ U/x⟩⟩ : τ

with Π the derivation

Θ; ∆1 |= N1 : σ

Θ; ∆2 |= N2 : σ
[F:1ℓ] Θ; - |= 1 : ω

[F:bagℓ] Θ; ∆2 |= *N2+ : σ
[F:bagℓ]

Θ; ∆ |= *N1+ · *N2+ : σ2

where ∆ = ∆1, ∆2 and Γ = Γ′, ∆. By Lemma 34, there exist derivations Π1 of Θ, x! :
η; Γ′, x : σ, ∆1 |= M{|N1/x|} : τ and Π2 of Θ, x! : η; Γ′, x : σ, ∆2 |= M{|N2/x|} : τ .
Therefore, one has the following derivation where we omit the second case of the sum:

Π1

Θ; · |= U : ϵ Θ; ∆ |= *N2+ : σ
[F:bag]

Θ; ∆ |= *N2 + ⋆U : (σ, ϵ)
[F:ex-sub]

Θ; Γ′, ∆1 |= M{|N1/x|}⟨⟨*N2+ ⋆ U/x⟩⟩ : τ
...

[F:sum]
Θ; Γ′, ∆ |= M{|N1/x|}⟨⟨*N2+ ⋆ U/x⟩⟩+ M{|N2/x|}⟨⟨*N1+ ⋆ U/x⟩⟩ : τ

Assuming M′ = M{|N1/x|}⟨⟨*N2+ ⋆ B!
/x⟩⟩+ M{|N2/x|}⟨⟨*N1+ ⋆ B!

/x⟩⟩, the result follows.
3. Rule [R : Fetch!].

Then M = M ⟨⟨C ⋆ U/x⟩⟩, where U = *N1 +! ⋄ · · · ⋄ *Nl+! and head(M) = x[i]. The
reduction is as:

head(M) = x[i] Ui = *Ni+!
[R : Fetch!]

M ⟨⟨C ⋆ U/x⟩⟩ −→M{|Ni/x[i]|}⟨⟨C ⋆ U/x⟩⟩

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 29

By hypothesis, one has the derivation:

Θ, x! : η; Γ′, x̂ : σj |= M : τ

Π
Θ; · |= U : ϵ Θ; ∆ |= C : σk

[F:bag]
Θ; ∆ |= C ⋆ U : (σk, ϵ) η ∝ ϵ

[F:ex-sub]
Θ; Γ′, ∆ |= M⟨⟨C ⋆ U/x⟩⟩ : τ

Where Π has the form
Θ; · |= N1 : ϵ1[F:bag!]

Θ; · |= *N1+! : ϵ1 · · ·
Θ; · |= Nl : ϵl[F:bag!]

Θ; · |= *Nl+! : ϵl[F: ⋄ bag!]
Θ; · |= *N1 +! ⋄ · · · ⋄ *Nl+! : ϵ

where Γ = Γ′, ∆. Notice that if ϵi = δ and η ∝ ϵ then ηi = δ By Lemma 35, there exists
a derivation Π1 of Θ, x! : η; Γ′, x̂ : σj |= M{|Ni/x[i]|} : τ . Therefore, one has the following
derivation:

Θ, x! : η; Γ′, x̂ : σj |= M{|N1/x[i]|} : τ

Θ; · |= U : ϵ Θ; ∆ |= C : σk

[F:bag]
Θ; ∆ |= C ⋆ U : (σk, ϵ) η ∝ ϵ

[F:ex-sub]
Θ; Γ′, ∆ |= M{|Ni/x[i]|}⟨⟨C ⋆ U/x⟩⟩ : τ

4. Rule [R : Failℓ].
Then M = M ⟨⟨C ⋆ U/x⟩⟩ where #(x, M) ̸= size(C) and we can perform the reduction:

#(x, M) ̸= size(C) ỹ = (mlfv(M) \ x) ⊎mlfv(C)
[R : Failℓ]

M ⟨⟨C ⋆ U/x⟩⟩ −→
∑

PER(C) failỹ

with M′ =
∑

PER(B) failỹ. By hypothesis, one has the derivation:

Θ, x! : η; Γ′, x̂ : σ2 |= M : τ Θ; ∆ |= C ⋆ U : (σ2, ϵ) η ∝ ϵ
[F:ex-sub]

Θ; Γ′, ∆ |= M⟨⟨C ⋆ U/x⟩⟩ : τ

From #(x, M) ̸= size(B) we have that j ̸= k. Hence Γ = Γ′, ∆ and we type the following:

[F:fail]
Θ; Γ |= failỹ : τ · · ·

[F:fail]
Θ; Γ |= failỹ : τ

[F:sum]
Θ; Γ |=

∑
PER(B) failỹ : τ

5. Rule [R : Fail!].
Then M = M ⟨⟨C ⋆ U/x⟩⟩ where head(M) = x[i], Ui = 1! and we can perform the reduction:

head(M) = x[i] Ui = 1!
[R : Fail!]

M ⟨⟨C ⋆ U/x⟩⟩ −→M{|fail∅/x[i]|}⟨⟨C ⋆ U/x⟩⟩

with M′ = M{|fail∅/x[i]|}⟨⟨C ⋆ U/x⟩⟩. By hypothesis, one has the derivation:

Θ, x! : η; Γ′, x̂ : σj |= M : τ Θ; ∆ |= C ⋆ U : (σk, ϵ) η ∝ ϵ
[F:ex-sub]

Θ; Γ′, ∆ |= M⟨⟨C ⋆ U/x⟩⟩ : τ

where Γ = Γ′, ∆. By Lemma 35, there is a derivation Π1 of Θ, x! : η; Γ′, x̂ : σj |=
M{|fail∅/x[i]|} : τ . Therefore, one has the derivation: (the last rule applied is [R : ex-sub])

30 Unrestricted Resources in Encoding Functions as Processes

Θ, x! : η; Γ′, x̂ : σj |= M{|fail∅/x[i]|} : τ

Θ; · |= U : ϵ Θ; ∆ |= B : σk

[F:bag]
Θ; ∆ |= C ⋆ U : (σk, ϵ) η ∝ ϵ

Θ; Γ′, ∆ |= M{|fail∅/x[i]|}⟨⟨C ⋆ U/x⟩⟩ : τ

6. Rule [R : Cons1].
Then M = failx̃ B where B = C ⋆ U , C = *N1 + · · · · · *Nk+ , k ≥ 0 and we can perform
the following reduction:

size(C) = k ỹ = mlfv(C)
[R : Cons1]

failx̃ C ⋆ U −→
∑

PER(C) failx̃⊎ỹ

where M′ =
∑

PER(C) failx̃⊎ỹ. By hypothesis, one has
[F:fail]

Θ; Γ′ |= failx̃ : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:app]

Θ; Γ′, ∆ |= failx̃ B : τ

Hence Γ = Γ′, ∆ and we may type the following:

[F:fail]
Θ; Γ |= failx̃⊎ỹ : τ · · ·

[F:fail]
Θ; Γ |= failx̃⊎ỹ : τ

[F:sum]
Θ; Γ |=

∑
PER(C) failx̃⊎ỹ : τ

7. Rule [R : Cons2].
Then M = failz̃ ⟨⟨B/x⟩⟩ where B = *N1 + · · · · · *Nk+ , k ≥ 1 and one has the reduction:

#(z, x̃) = size(C) ỹ = mlfv(C) ỹ = mlfv(C)
[R : Cons2]

failx̃ ⟨⟨C ⋆ U/z⟩⟩ −→
∑

PER(C) fail(x̃\z)⊎ỹ

where M′ =
∑

PER(B) fail(z̃\x)⊎ỹ. By hypothesis, there exists a derivation:

dom(Γ′, x̂ : σj) = z̃
[F:fail]

Θ, x! : η; Γ′, x̂ : σj |= M : τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:ex-sub]

Θ; Γ′, ∆ |= failz̃⟨⟨B/x⟩⟩ : τ

Hence Γ = Γ′, ∆ and we may type the following:

[F:fail]
Θ; Γ |= fail(z̃\x)⊎ỹ : τ · · ·

[F:fail]
Θ; Γ |= fail(z̃\x)⊎ỹ : τ

[F:sum]
Θ; Γ |=

∑
PER(B) fail(z̃\x)⊎ỹ : τ

8. Rule [R : TCont].
Then M = C[M] and the reduction is as follows:

M −→M ′
1 + · · ·+ M ′

l[R : TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
l]

where M′ = C[M ′
1] + · · ·+ C[M ′

l]. The proof proceeds by analysing the context C:

a. C = [·] B.
In this case M = M B, for some B, and the following derivation holds:

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 31

Θ; Γ′ |= M : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:app]

Θ; Γ′, ∆ |= M B : τ

where Γ = Γ′, ∆. Since Θ; Γ′ |= M : (σj , η) → τ and M −→ M ′
1 + . . . + M ′

l , it
follows by IH that Γ′ |= M ′

1 + . . . + M ′
l : (σj , η) → τ . By applying [F:sum], one has

Θ; Γ′ |= M ′
i : (σj , η)→ τ , for i = 1, . . . , l. Therefore, we may type the following:

∀i ∈ 1, . . . , l

Θ; Γ′ |= M ′
i : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ

[F:app]
Θ; Γ′, ∆ |= M ′

i B : τ
[F:sum]

Θ; Γ′, ∆ |= (M ′
1 B) + · · ·+ (M ′

l B) : τ

Thus, Γ |= M′ : τ , and the result follows.
b. C = ([·])⟨⟨B/x⟩⟩.

This case is similar to the previous.

9. Rule [R : ECont].
Then M = D[M′′] where M′′ →M′′′ then we can perform the following reduction:

M′′ −→M′′′
[R : ECont]

D[M′′] −→ D[M′′′]

Hence M′ = D[M′′′]. The proof proceeds by analysing the context D (D = [·] + N or
D = N + [·]), and follows easily by induction hypothesis.

◀

B.1 Examples
This section contains examples illustrating the constructions and results given in Section 3.

▶ Example 37. The following is a wfderivation Π2 for the bag concatenation *x + ⋆1! :

[F:varℓ]
Θ′; x : σ |= x : σ

[F:1ℓ]
Θ′; - |= 1 : ω

[F:bagℓ]
Θ′; x : σ |= *x + ·1 : σ

[F:1!]
Θ′; - |= 1! : σ′

[F:bag]
Θ′; x : σ |= (*x + ⋆1!) : (σ, σ′)

▶ Example 38 (Cont.37). The following is a well-formedness derivation (labels of the rules
being applied are omitted) for term ∆4 = λx.x[1](*x + ⋆1!):

Θ, x! : (σj , η)→ τ ; x : (σj , η)→ τ |= x : (σj , η)→ τ

Θ, x! : (σj , η)→ τ ; - |= x[1] : (σj , η)→ τ Π2 η ∝ σ′

Θ, x! : (σj , η)→ τ ; x : σ |= x[1](*x + ⋆1!) : τ

Θ; - |= λx.(x[1](*x + ⋆1!)) : (σ, (σj , η)→ τ)→ τ

▶ Example 39. Below we show the wf-derivation for the bag A = (*x[1] + · * x+) ⋆ *x[2]+!.
First, let Π be the following derivation:

[F:varℓ]
Θ, x! : η; x : σ3 |= x : σ3[F:var!]
Θ, x! : η; - |= x[1] : σ3

[F:varℓ]
Θ, x! : η; x : σ3 |= x : σ3

[F:1ℓ]
Θ, x! : η; - |= 1 : ω

[F:bagℓ]
Θ, x! : η; x : σ3 |= *x + ·1 : σ3[F:bagℓ]

Θ, x! : η; x : σ3 |= *x[1] + · * x+ : σ2
3

32 Unrestricted Resources in Encoding Functions as Processes

From Π we can obtain the well-formedness derivation ΠA for A:

Π
Θ, x! : η; x : σ3 |= *x[1] + · * x+ : σ2

3

[F:varℓ]
Θ, x! : η; x : σ2 |= x : σ2[F:var!]
Θ, x! : η; - |= x[2] : σ2[F:bag!]

Θ, x! : η; - |= *x[2]+! : σ2[F:bag]
Θ, x! : η; x : σ3 |= (*x[1] + · * x+) ⋆ *x[2]+!︸ ︷︷ ︸

A

: (σ2
3 , σ2)

where η = σ3 ⋄ σ2.

▶ Example 40. Below we present the wf-derivation ΠB of the bag B = *x + ⋆1!:

[F:varℓ]
Θ, x! : η; x : σ3 |= x : σ3

[F:1ℓ]
Θ, x! : η; - |= 1 : ω

[F:bagℓ]
Θ, x! : η; x : σ3 |= *x + ·1 : σ1

3
[F:1!]

Θ, x! : η; - |= 1! : σ′
[F:bag]

Θ, x! : η; x : σ3 |= (*x + ⋆1!) : (σ3, σ′)

▶ Example 41. To illustrate our well-formed rules, let M be the following uλ ⊕-term:

M = λx.(y((*x[1] + · * x+) ⋆ *x[2]+!)︸ ︷︷ ︸
A

(*x + ⋆1!)︸ ︷︷ ︸
B

).

To ease the notation M is an abstraction λx.((yA) B), where A = (*x[1] + · * x+) ⋆ *x[2]+!

and B = *x + ⋆1!. From the derivation ΠA (Example 39) we obtain the wf-derivation Π′
A for

the application yA:

[F:varℓ]
Θ, x! : η; ∆ |= y : (σk

3 , η′′)→ ((σj
3, η′)→ τ)

ΠA

Θ, x! : η; x : σ3 |= A : (σ2
3 , σ2) η′′ ∝ σ2[F:app]

Θ, x! : η; x : σ3, ∆ |= yA : (σj
3, η′)→ τ

where η = σ3 ⋆ σ2, for some list type η′ and integers k, j. From the premise η′′ ∝ σ2 it follows
that η′′ = σ2 ⋄ η′′′ for an arbitrary η′′′. From the derivation ΠB (Example 40) we obtain the
well-formed derivation for term M :

Π′
A

Θ, x! : η; x : σ3, ∆ |= y A : (σj
3, η′)→ τ

ΠB

Θ, x! : η; x : σ3 |= B : (σ3, σ′) η′ ∝ σ′
[F : app]

Θ, x! : η; x : σ3, x : σ3, ∆ |= (yA)B : τ x /∈ dom(∆)
[F:abs]

Θ; ∆ |= λx.((yA)B) : (σ2
3 , η)→ τ

where ∆ = y : (σk
3 , η′′) → ((σj

3, η′) → τ). From the premise η′ ∝ σ′ we obtain that
η′ = σ′ ⋄ η′′′′, where σ′ is an arbitrary strict type and η′′′′ is an arbitrary list type.

C Appendix to Subsection 4.1

▶ Definition 42 (Structural Congruence). Structural congruence is defined as the least con-
gruence relation on processes such that:

P ≡α Q⇒ P ≡ Q P | 0 ≡ P P | Q ≡ Q | P
(νx)0 ≡ 0 (P | Q) | R ≡ P | (Q | R) [x↔ y] ≡ [y ↔ x]
x ̸∈ fn(P)⇒ ((νx)P) | Q ≡ (νx)(P | Q) (νx)(νy)P ≡ (νy)(νx)P

P ⊕ (Q⊕R) ≡ (P ⊕Q)⊕R P ⊕Q ≡ Q⊕ P

(νx)(P | (Q⊕R)) ≡ (νx)(P | Q)⊕ (νx)(P | R) 0⊕ 0 ≡ 0

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 33

D Appendix to Subsection 4.2

We need a few auxiliary notions to formalize reduction for uλ̂ ⊕.

▶ Definition 43 (Head). We amend Definition 6 for the case of terms in uλ̂ ⊕:

head(x) = x head(x[i]) = x[i]
head(M B) = head(M) head(λx.(M [x̃← x])) = λx.(M [x̃← x])
head(M⟨|N/x|⟩) = head(M) head(MTU/xW) = head(M)

head((M [x̃← x])⟨⟨B/x⟩⟩) = (M [x̃← x])⟨⟨B/x⟩⟩ head(failx̃) = failx̃

head(M [x̃← x]) =
{

x If head(M) = y and y ∈ x̃

head(M) Otherwise

▶ Definition 44 (Linear Head Substitution). Given an M with head(M) = x, the linear
substitution of a term N for the head variable x of the term M , written M{|N/x|} is
inductively defined as:

x{|N/x|} = N (M B){|N/x|} = (M{|N/x|}) B

(MTU/yW){|N/x|} = (M{|N/x|}) TU/yW x ̸= y

(M⟨|L/y|⟩){|N/x|} = (M{|N/x|}) ⟨|L/y|⟩ x ̸= y

((M [ỹ ← y])⟨⟨B/y⟩⟩){|N/x|} = (M [ỹ ← y]{|N/x|}) ⟨⟨B/y⟩⟩ x ̸= y

(M [ỹ ← y]){|N/x|} = (M{|N/x|})[ỹ ← y] x ̸= y

Following Def. 8, we define contexts for terms and expressions. While expression contexts
are as in Def. 8; the term contexts for uλ̂ ⊕ involve explicit linear and unrestricted substitutions,
rather than an explicit substitution: this is due to the reduction strategy we have chosen to
adopt, as we always wish to evaluate explicit substitutions first. We assume that the terms
that fill in the holes respect the conditions on explicit linear substitutions (i.e., variables
appear in a term only once, shared variables must occur in the context), similarly for explicit
unrestricted substitutions.

▶ Definition 45 (Evaluation Contexts). Contexts for terms and expressions are defined by
the following grammar:

C[·], C′[·] ::= ([·])B | ([·])⟨|N/x|⟩ | ([·])TU/xW | ([·])[x̃← x] | ([·])[← x]⟨⟨1/x⟩⟩
D[·], D′[·] ::= M + [·] | [·] + M

The result of replacing a hole with a uλ̂ ⊕-term M in a context C[·], denoted with C[M], has
to be a term in uλ̂ ⊕.

This way, e.g., the hole in context C[·] = ([·])⟨|N/x|⟩ cannot be filled with y, since
C[y] = (y)⟨|N/x|⟩ is not a well-defined term. Indeed, M⟨|N/x|⟩ requires that x occurs
exactly once within M . Similarly, we cannot fill the hole with failz with z ̸= x, since
C[failz] = (failz)⟨|N/x|⟩ is also not a well-defined term, for the same reason.

Operational Semantics
As in uλ ⊕, the reduction relation −→ on uλ̂ ⊕ operates lazily on expressions; it is defined by
the rules in Fig. 13, and relies on a notion of linear free variables given in Fig. 12.

As expected, rule [RS : Beta] results into an explicit substitution M [x̃← x]⟨⟨B/x⟩⟩, where
B = C ⋆ U is a bag with a linear part C and an unrestricted part U .

34 Unrestricted Resources in Encoding Functions as Processes

lfv(x) = {x}
lfv(x[i]) = ∅
lfv(1) = ∅
lfv(*M+) = lfv(M)
lfv(*M+!) = lfv(M)
lfv(C ⋆ U) = lfv(C)
lfv(*M+ · C) = lfv(M) ∪ lfv(C)

lfv(M B) = lfv(M) ∪ lfv(B)
lfv(λx.M [x̃← x]) = lfv(M [x̃← x])\{x}
lfv(M [x̃← x]⟨⟨B/x⟩⟩) = (lfv(M [x̃← x]) \ {x}) ⊎ lfv(B)
lfv(M⟨|N/x|⟩) = lfv(M) ∪ lfv(N)
lfv(MTU/xW) = lfv(M)
lfv(M + N) = lfv(M) ∪ lfv(N)
lfv(failx1,··· ,xn) = {x1, . . . , xn}

Figure 12 Free Variables for uλ̂ ⊕.

[RS:Beta]
(λx.(M [x̃← x]))B −→ (M [x̃← x])⟨⟨B/x⟩⟩

head(M) = x
[RS:Fetchℓ]

M⟨|N/x|⟩ −→M{|N/x|}
head(M) = x[i] Ui = *N+!

[RS:Fetch!]
MTU/xW −→M{|N/x[i]|}TU/xW

C = *M1 + · · · * Mk+ M ̸= failỹ

[RS:Ex-Sub]
M [x1, · · · , xk ← x]⟨⟨C ⋆ U/x⟩⟩ −→

∑
Ci∈PER(C)

M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(k)/xk|⟩TU/xW

k ̸= size(C) ỹ = (lfv(M) \ {x̃}) ∪ lfv(C)
[RS:Failℓ]

M [x1, · · · , xk ← x] ⟨⟨C ⋆ U/x⟩⟩ −→
∑

Ci∈PER(C)

failỹ

head(M) = x[i]
Ui = 1!

ỹ = lfv(M)
[RS:Fail!]

MTU/xW −→M{|fail∅/x[i]|}TU/xW

ỹ = lfv(C)
[RS:Cons1]

failx̃ C ⋆ U −→
∑

PER(C)

failx̃⊎ỹ

size(C) = |x̃| z̃ = lfv(C)
[RS:Cons2]

(failx̃⊎ỹ[x̃← x])⟨⟨C ⋆ U/x⟩⟩ −→
∑

PER(C)

failỹ⊎z̃

z̃ = lfv(N)
[RS:Cons3]

failỹ∪x⟨|N/x|⟩ −→ failỹ∪z̃

[RS:Cons4]
failỹTU/xW −→ failỹ

Figure 13 Reduction Rules for uλ̂ ⊕ (contextual rules omitted)

In the case |x̃| = k = size(C) and M ≠ failỹ, this explicit substitution expands into
a sum of terms involving explicit linear and unrestricted substitutions ⟨|N/x|⟩ and TU/xW,
which are the ones to reduce into a head substitution, via rule [RS:Ex-Sub]. Intuitively,
rule [RS:Ex-Sub] “distributes” an explicit substitution into a sum of terms involving explicit
linear substitutions; it considers all possible permutations of the elements in the bag among

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 35

all shared variables. Explicit linear/unrestricted substitutions evolve either into a head
substitution {|N/x|} (with N ∈ B), via rule [RS : Fetchℓ], or {|N/x|}TU/xW (with U ∈ B) via
rule [RS : Fetch!], depending on whether the head of the term is a linear or an unrestricted
variable.

In the case |x̃| = k ̸= size(C) or M = failỹ, the term M [x̃← x]⟨⟨B/x⟩⟩ will be a redex
of either rule [RS : Failℓ] or [RS : Cons2]. The latter has a side condition |x̃| = size(C),
because we want to give priority for application of [RS : Failℓ] when there is a mismatch
of linear variables and the number of linear resources. Rule [RS : Fail!] applies to an
unrestricted substitution MTU/xW when the head of M is an unrestricted variable, say x[i],
that aims to consume the i-th component of the bag U which is empty, i.e., Ui = 1!; then
the term reduces to a term where all the head of M is substituted by fail∅, the explicit
unrestricted substitution is not consumed and continues in the resulting term. Consuming
rules [RS : Cons1], [RS : Cons3] and [RS : Cons4] the term fail consume either a bag, or an
explicit linear substitution, or an explicit unrestricted substitution, respectively.

Notice that the left-hand sides of the reduction rules in uλ̂ ⊕ do not interfere with each
other. Similarly to uλ ⊕, reduction in uλ̂ ⊕ satisfies a diamond property.

▶ Example 46. We continue to illustrate the different behaviors of the terms below w.r.t.
the reduction rules for uλ̂ ⊕ (Fig. 13):
1. The case with a linear variable x in which the linear bag has size one, is close to the

standard meaning of applying an identity function to a term:

(λx.x1[x1 ← x]) * N ′ + ⋆U ′ −→[R:Beta] x1[x1 ← x]⟨⟨*N ′ + ⋆U ′
/x⟩⟩

−→[RS:Ex-Sub] x1⟨|N ′/x1|⟩TU ′/xW −→[R:Fetchℓ] x1{|N ′/x1|}TU ′/xW = N ′TU ′/xW

2. The case of an abstraction of one unrestricted variable that aims to consume the first
element of the unrestricted bag, which fails to contain a resource in the first component.

(λx.x[1][← x])1 ⋆ 1! ⋄ U ′ −→[R:Beta] x[1][← x]⟨⟨1 ⋆ 1! ⋄ U ′
/x⟩⟩ −→[RS:Ex-Sub] x[1]T1! ⋄ U ′/xW

−→[RS:Fail!] x[1]{|fail∅/x[1]|}T1! ⋄ U ′/xW = fail∅T1! ⋄ U ′/xW

3. The case of an abstraction of one unrestricted variable that aims to consume the ith
component of the unrestricted bag U ′. In the case C ′ = 1 and U ′

i ̸= 1! the reduction is:

(λx.x[i][← x])C ′ ⋄ U ′ −→[R:Beta] x[i][← x]⟨⟨C′ ⋄ U ′
/x⟩⟩

−→[RS:Ex-Sub] x[i]TC ′ ⋄ U ′/xW

−→[RS:Fetch!] x[i]{|N ′/x[i]|}TC ′ ⋄ U ′/xW = NTC ′ ⋄ U ′/xW

where U ′
i = *N ′+!. Otherwise, U ′

i = 1! and the reduction relies again on the size of the
linear bag C: if #(x, x[i]) = size(C ′) the reduction ends with an application of [R : fail!];
otherwise, it ends with an application [R : failℓ].

D.1 Well-formedness rules for uλ̂ ⊕

Similarly to uλ ⊕ we present a set “well-formedness” rules for uλ̂ ⊕-terms, -bags and -
expressions, based on an intersection type system for uλ̂ ⊕, defined upon strict, multiset,
list, tuple types, as introduced for uλ ⊕ and presented in Fig. 14. Linear contexts Γ, ∆ and
unrestricted contexts Θ, Υ are the same as in uλ ⊕, as well as well-formedness judgements
Θ; Γ ⊢M : σ.

36 Unrestricted Resources in Encoding Functions as Processes

[FS:varℓ] Θ; x : σ |= x : σ
Θ, x : η; x : ηi, ∆ |= x : σ

[FS:var!] Θ, x : η; ∆ |= x[i] : σ
[FS:1ℓ] Θ; - |= 1 : ω

[FS:1!]
Θ; - |= 1! : σ

Θ; Γ |= M : τ
[FS :weak]

Θ; Γ, x : ω |= M [← x] : τ

Θ; Γ |= M : σ

Θ; Γ |= N : σ
[FS:sum]

Θ; Γ |= M + N : σ

Θ, x : η; Γ, x : σk |= M [x̃← x] : τ x /∈ dom(Γ)
[FS:abs-sh]

Θ; Γ |= λx.(M [x̃← x]) : (σk, η)→ τ

Θ; Γ |= M : (σj , η)→ τ

η ∝ ϵ

Θ; ∆ |= B : (σk, ϵ)
[FS:app]

Θ; Γ, ∆ |= M B : τ

Θ; Γ |= C : σk Θ; - |= U : η
[FS:bag]

Θ; Γ |= C ⋆ U : (σk, η)
Θ; - |= U : ϵ Θ; - |= V : η

[FS: ⋄ −bag!] Θ; - |= U ⋄ V : ϵ ⋄ η

Θ; - |= M : σ
[FS:bag!]

Θ; - |= *M+! : σ

Θ; Γ |= M : σ Θ; ∆ |= C : σk

[FS:bagℓ]
Θ; Γ, ∆ |= *M + ·C : σk+1

x /∈ dom(Γ) k ̸= 0
Θ; Γ, x1 : σ, · · · , xk : σ |= M : τ

[FS:share]
Θ; Γ, x : σk |= M [x1, · · · , xk ← x] : τ

Θ; Γ, x : σ |= M : τ

Θ; ∆ |= N : σ
[FS:Esubℓ] Θ; Γ, ∆ |= M⟨|N/x|⟩ : τ

Θ, x : η; Γ |= M : τ Θ; - |= U : ϵ η ∝ ϵ
[FS:Esub!] Θ; Γ |= MTU/xW : τ

Θ; ∆ |= B : (σk, ϵ)
Θ, x : η; Γ, x : σj |= M [x̃← x] : τ η ∝ ϵ

[FS:Esub]
Θ; Γ, ∆ |= (M [x̃← x])⟨⟨B/x⟩⟩ : τ

dom(Γ) = x̃
[FS:fail]

Θ; Γ |= failx̃ : τ

Figure 14 Well-Formedness Rules for uλ̂ ⊕

▶ Definition 47 (Well-formedness in uλ̂ ⊕). An expression M is well formed if there exists a
Θ, Γ and a τ such that Θ; Γ |= M : τ is entailed via the rules in Fig. 14.

Well-formed rules for uλ̂ ⊕ are essentially the same as the ones for uλ ⊕. Rules [FS : abs-sh]
and [FS:Esub] are modified to take into account the sharing construct [x̃← x]. Rule [FS:share]
is exclusive for uλ̂ ⊕ and requires, for each i = 1, . . . , k, the variable assignment xi : σ, to
derive the well-formedness of M [x1, . . . , xn ← x] : τ (in addition to variable assignments in
Θ and Γ).

▶ Lemma 48 (Linear Substitution Lemma for uλ̂ ⊕). If Θ; Γ, x : σ |= M : τ , head(M) = x,
and Θ; ∆ |= N : σ then Γ, ∆ |= M{|N/x|} : τ .

Proof. By structural induction on M with head(M) = x. There are six cases to be analyzed:
1. M = x

In this case, Θ; x : σ |= x : σ and Γ = ∅. Observe that x{|N/x|} = N , since ∆ |= N : σ,
by hypothesis, the result follows.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 37

2. M = M ′ B.
Then head(M ′ B) = head(M ′) = x, and the derivation is the following:

Θ; Γ1, x : σ |= M ′ : (δj , η)→ τ Θ; Γ2 |= B : (δk, ϵ) η ∝ ϵ
[FS:app]

Θ; Γ1, Γ2, x : σ |= M ′B : τ

where Γ = Γ1, Γ2, and j, k are non-negative integers, possibly different. Since ∆ ⊢ N : σ,
by IH, the result holds for M ′, that is,

Γ1, ∆ |= M ′{|N/x|} : (δj , η)→ τ

which gives the derivation:

Θ; Γ1, ∆ |= M ′{|N/x|} : (δj , η)→ τ Θ; Γ2 |= B : (δk, ϵ) η ∝ ϵ
[FS:app]

Θ; Γ1, Γ2, ∆ |= (M ′{|N/x|})B : τ

From Def. 44, (M ′B){|N/x|} = (M ′{|N/x|})B, and the result follows.
3. M = M ′[ỹ ← y].

Then head(M ′[ỹ ← y]) = head(M ′) = x, for y ̸= x. Therefore,
Θ; Γ1, y1 : δ, · · · , yk : δ, x : σ |= M ′ : τ y /∈ Γ1 k ̸= 0

[FS:share]
Θ; Γ1, y : δk, x : σ |= M ′[y1, · · · , yk ← x] : τ

where Γ = Γ1, y : δk. By IH, the result follows for M ′, that is,

Θ; Γ1, y1 : δ, · · · , yk : δ, ∆ |= M ′{|N/x|} : τ

and we have the derivation:

Θ; Γ1, y1 : δ, · · · , yk : δ, ∆ |= M ′{|N/x|} : τ y /∈ Γ1 k ̸= 0
[FS:share]

Θ; Γ1, y : δk, ∆ |= M ′{|N/x|}[ỹ ← y] : τ

From Def. 44 M ′[ỹ ← y]{|N/x|} = M ′{|N/x|}[ỹ ← y], and the result follows.
4. M = M ′[← y].

Then head(M ′[← y]) = head(M ′) = x with x ̸= y,
Θ; Γ, x : σ |= M : τ

[FS:weak]
Θ; Γ, y : ω, x : σ |= M [← y] : τ

and M ′[← y]{|N/x|} = M ′{|N/x|}[← y]. Then by the induction hypothesis:
Θ; Γ, ∆ |= M{|N/x|} : τ

[FS:weak]
Θ; Γ, y : ω, ∆ |= M{|N/x|}[← y] : τ

5. If M = M ′⟨|M ′′/y|⟩ then head(M ′⟨|M ′′/y|⟩) = head(M ′) = x ̸= y,

Θ; Γ, y : δ, x : σ |= M : τ Θ; ∆ |= M ′′ : δ
[FS:ex-subℓ] Θ; Γ1, Γ2, x : σ |= M ′⟨|M ′′/y|⟩ : τ

and M ′⟨|M ′′/y|⟩{|N/x|} = M ′{|N/x|}⟨|M ′′/y|⟩. Then by the induction hypothesis:

Θ; Γ, y : δ, ∆ |= M ′{|N/x|} : τ Θ; ∆ |= M ′′ : δ
[FS:ex-subℓ] Θ; Γ1, Γ2, ∆ |= M ′{|N/x|}⟨|M ′′/y|⟩ : τ

6. If M = M ′TU/yW then head(M ′TU/yW) = head(M ′) = x, and the proofs is similar to the
case above.

◀

38 Unrestricted Resources in Encoding Functions as Processes

▶ Lemma 49 (Unrestricted Substitution Lemma for uλ̂ ⊕). If Θ, x! : η; Γ |= M : τ , head(M) =
x[i], ηi = σ, and Θ; · |= N : σ then Θ, x! : η; Γ |= M{|N/x[i]|}.

Proof. By structural induction on M with head(M) = x[i]. There are three cases to be
analyzed:

1. M = x[i].
In this case,

[F:varℓ]
Θ, x! : η; x : ηi |= x : σ

[F:var!]
Θ, x! : η; · |= x[i] : σ

and Γ = ∅. Observe that x[i]{|N/x[i]|} = N , since Θ, x! : η; Γ |= M{|N/x[i]|}, by
hypothesis, the result follows.

2. M = M ′ B.
In this case, head(M ′ B) = head(M ′) = x[i], and one has the following derivation:

Θ, x! : η; Γ1 |= M : (δj , ϵ)→ τ Θ, x! : σ; Γ2 |= B : (δk, ϵ′) ϵ ∝ ϵ′
[F:app]

Θ, x! : η; Γ1, Γ2 |= M B : τ

where Γ = Γ1, Γ2, δ is a strict type and j, k are non-negative integers, possibly different.
By IH, we get Θ, x! : η; Γ1 |= M ′{|N/x[i]|} : (δj , ϵ)→ τ , which gives the derivation:

Θ, x! : η; Γ1 |= M ′{|N/x[i]|} : (δj , ϵ)→ τ Θ, x! : η; Γ2 |= B : (δk, ϵ′) ϵ ∝ ϵ′
[F:app]

Θ, x! : η; Γ1, Γ2 |= (M ′{|N/x[i]|})B : τ

From Def. 7, M ′⟨⟨B/y⟩⟩{|N/x[i]|} = M ′{|N/x[i]|}⟨⟨B/y⟩⟩, and the result follows.
3. M = M ′[ỹ ← y].

Then head(M ′[ỹ ← y]) = head(M ′) = x[i], for y ̸= x. Therefore,
Θ, x! : η; Γ1, y1 : δ, · · · , yk : δ |= M ′ : τ y /∈ Γ1 k ̸= 0

[FS:share]
Θ, x! : η; Γ1, y : δk |= M ′[y1, · · · , yk ← y] : τ

where Γ = Γ1, y : δk. By IH, the result follows for M ′, that is,

Θ, x! : η; Γ1, y1 : δ, · · · , yk : δ |= M ′{|N/x[i]|} : τ

and we have the derivation:

Θ, x! : η; Γ1, y1 : δ, · · · , yk : δ |= M ′{|N/x[i]|} : τ y /∈ Γ1 k ̸= 0
[FS:share]

Θ, x! : η; Γ1, y : δk |= M ′{|N/x[i]|}[ỹ ← y] : τ

From Def. 44 M ′[ỹ ← y]{|N/x[i]|} = M ′{|N/x[i]|}[ỹ ← y], and the result follows.
4. M = M ′[← y].

Then head(M ′[← y]) = head(M ′) = x[i] with x ̸= y,
Θ, x! : η; Γ |= M : τ

[FS:weak]
Θ, x! : η; Γ, y : ω |= M [← y] : τ

and M ′[← y]{|N/x[i]|} = M ′{|N/x[i]|}[← y]. Then by the induction hypothesis:
Θ, x! : η; Γ |= M{|N/x[i]|} : τ

[FS:weak]
Θ, x! : η; Γ, y : ω |= M{|N/x[i]|}[← y] : τ

5. M = M ′⟨|M ′′/y|⟩.
Then head(M ′⟨|M ′′/y|⟩) = head(M ′) = x[i] with x ̸= y,

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 39

Θ, x! : η; Γ, y : δ |= M : τ Θ, x! : η; ∆ |= M ′′ : δ
[FS:ex-subℓ]

Θ, x! : η; Γ, ∆ |= M ′⟨|M ′′/y|⟩ : τ

and M ′⟨|M ′′/y|⟩{|N/x[i]|} = M ′{|N/x[i]|}⟨|M ′′/y|⟩. Then by the induction hypothesis:

Θ, x! : η; Γ, y : δ |= M ′{|N/x[i]|} : τ Θ, x! : η; ∆ |= M ′′ : δ
[FS:ex-subℓ] Θ; Γ, ∆ |= M ′{|N/x[i]|}⟨|M ′′/y|⟩ : τ

6. M = M ′TU/yW.
Then head(M ′TU/yW) = head(M ′) = x[i],

Θ, x! : η, y! : ϵ; Γ |= M : τ Θ, x! : η; - |= U : ϵ
[FS:ex-sub!]

Θ, x! : η; Γ |= MTU/yW : τ

and M ′TU/yW{|N/x[i]|} = M ′{|N/x[i]|}TU/yW. Then by the induction hypothesis:

Θ, x! : η, y! : ϵ; Γ |= M ′{|N/x[i]|} : τ Θ, x! : η; - |= U : η
[FS:ex-sub!]

Θ, x! : η; Γ |= M ′{|N/x[i]|}TU/yW : τ

◀

▶ Theorem 50 (SR in uλ̂ ⊕). If Θ; Γ |= M : τ and M −→M′ then Θ; Γ |= M′ : τ .

Proof. By structural induction on the reduction rule from Fig. 13 applied in M −→ N.

1. Rule [RS:Beta].
Then M = (λx.M [x̃← x])B and the reduction is:

[RS:Beta]
(λx.M [x̃← x])B −→M [x̃← x] ⟨⟨B/x⟩⟩

where M′ = M [x̃← x] ⟨⟨B/x⟩⟩. Since Θ; Γ |= M : τ we get the following derivation:

Θ, x! : η; Γ′, x1 : σ, · · · , xj : σ |= M : τ
[FS:share]

Θ, x! : η; Γ′, x : σj |= M [x̃← x] : τ
[FS:abs-sh]

Θ; Γ′ |= λx.M [x̃← x] : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[FS:app]

Θ; Γ′, ∆ |= (λx.M [x̃← x])B : τ

for Γ = Γ′, ∆ and x /∈ dom(Γ′). Notice that:

Θ, x! : η; Γ′, x1 : σ, · · · , xj : σ |= M : τ
[FS:share]

Θ, x! : η; Γ′, x : σj |= M [x̃← x] : τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[FS:ex-sub]

Θ; Γ′, ∆ |= M [x̃← x] ⟨⟨B/x⟩⟩ : τ

Therefore Θ; Γ′, ∆ |= M′ : τ and the result follows.
2. Rule [RS:Ex-Sub].

Then M = M [x1, · · · , xk ← x] ⟨⟨C ⋆ U/x⟩⟩ where C = *N1 + · · · · · *Nk+. The reduction is:

C = *M1 + · · · * Mk+ M ̸= failỹ

[RS:Ex-Sub]
M [x1,· · ·, xk ← x]⟨⟨C ⋆ U/x⟩⟩ −→

∑
Ci∈PER(C)

M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(k)/xk|⟩TU/xW

and M′ =
∑

Ci∈PER(C) M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(k)/xk|⟩TU/xW To simplify the proof we take
k = 2, as the case k > 2 is similar. Therefore,

40 Unrestricted Resources in Encoding Functions as Processes

C = *N1 + · * N2+; and
PER(C) = {*N1 + · * N2+, *N2 + · * N1+}.

Since Θ; Γ |= M : τ we get a derivation: (we omit the labels [FS : ex-sub] and [FS:share])

Θ, x! : η; Γ′, x1 : σ, x2 : σ |= M : τ x /∈ dom(Γ) k ̸= 0
Θ, x! : η; Γ′, x : σ2 |= M [x̃← x] : τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ

Θ; Γ′, ∆ |= (M [x̃← x])⟨⟨B/x⟩⟩ : τ

where Γ = Γ′, ∆. Consider the wf derivation for Π1,2: (we omit the labels [FS : ex-sub!]
and [FS : ex-subℓ])

Θ, x! : η; Γ′, x1 : σ, x2 : σ |= M : τ Θ; ∆1 |= N1 : σ

Θ, x! : η; Γ′, x2 : σ, ∆1 |= M⟨|N1/x1|⟩ : τ Θ; ∆2 |= N2 : σ

Θ, x! : η; Γ′, ∆ |= M⟨|N1/x1|⟩⟨|N2/x2|⟩ : τ Θ; - |= U : ϵ η ∝ ϵ

Θ; Γ′, ∆ |= M⟨|N1/x1|⟩⟨|N2/x2|⟩TU/xW : τ

Similarly, we can obtain a derivation Π2,1 of Θ; Γ′, ∆ |= M⟨|N2/x1|⟩⟨|N1/x2|⟩TU/xW : τ .
Finally, applying [FS:sum]:

Π1,2 Π2,1[FS:sum]
Θ; Γ′, ∆ |= M⟨|N1/x1|⟩⟨|N2/x2|⟩TU/xW + M⟨|N2/x1|⟩⟨|N1/x2|⟩TU/xW : τ

and the result follows.
3. Rule [RS:Fetchℓ].

Then M = M⟨|N/x|⟩ where head(M) = x. The reduction is:

head(M) = x
[RS:Fetchℓ]

M⟨|N/x|⟩ −→M{|N/x|}

and M′ = M⟨|N/x|⟩. Since Θ; Γ |= M : τ we get the following derivation:
Θ; Γ′, x : σ |= M : τ Θ; ∆ |= N : σ

[FS:ex-subℓ] Θ; Γ′, ∆ |= M⟨|N/x|⟩ : τ

where Γ = Γ′, ∆. By Lemma 48, we obtain the derivation Θ; Γ′, ∆ |= M{|N/x|} : τ .
4. Rule [RS:Fetch!].

Then M = MTU/xW where head(M) = x[i]. The reduction is:

head(M) = x[i] Ui = *N+!

MTU/xW −→M{|N/x[i]|}TU/xW

and M′ = MTU/xW. Since Θ; Γ |= M : τ we get the following derivation:

Θ, x! : η; Γ |= M : τ Θ; - |= U : ϵ η ∝ ϵ
[FS:ex-sub!] Θ; Γ |= MTU/xW : τ

By Lemma 49, we obtain the derivation Θ; Γ |= M{|N/x[i]|}TU/xW : τ .
5. Rule [RS:TCont].

Then M = C[M] and the reduction is as follows:

M −→M ′
1 + · · ·+ M ′

k[RS:TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

with M′ = C[M] −→ C[M ′
1] + · · ·+ C[M ′

k]. The proof proceeds by analysing the context
C. There are four cases:

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 41

a. C = [·] B.
In this case M = M B, for some B. Since Γ ⊢M : τ one has a derivation:

Θ; Γ′ |= M : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[FS:app]

Θ; Γ′, ∆ |= M B : τ

where Γ = Γ′, ∆. From Γ′ |= M : σj → τ and the reduction M −→ M ′
1 + · · · + M ′

k,
one has by IH that Γ′ |= M ′

1 + . . . , M ′
k : σj → τ , which entails Γ′ |= M ′

i : σj → τ , for
i = 1, . . . , k, via rule [FS:sum]. Finally, we may type the following:

∀i ∈ 1, · · · , l

Θ; Γ′ |= M ′
i : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ

[FS:app]
Θ; Γ′, ∆ |= M ′

i B : τ
[FS:sum]

Γ′, ∆ |= (M ′
1 B) + · · ·+ (M ′

l B) : τ

Since M′ = (C[M ′
1]) + · · ·+ (C[M ′

l]) = M ′
1B + . . . + M ′

kB, the result follows.
b. Cases C = [·]⟨|N/x|⟩ and C = [·][x̃← x] are similar to the previous.
c. Other cases proceed similarly.

6. Rule [RS:ECont].
This case is analogous to the previous.

7. Rule [RS:Failℓ].
Then M = M [x̃← x] ⟨⟨C ⋆ U/x⟩⟩ where C = *N1 + · · · · · *Nl+ and the reduction is:

k ̸= size(C) ỹ = (lfv(M) \ {x̃}) ∪ lfv(C)
[RS:Failℓ]

M [x1, · · · , xk ← x] ⟨⟨C ⋆ U/x⟩⟩ −→
∑

Ci∈PER(C)

failỹ

where M′ =
∑

Ci∈PER(C) failỹ. Since Θ, x : η; Γ′, x1 : σ, . . . , xk : σ |= M, one has a
derivation:

Θ, x : η; Γ′, x1 : σ, . . . , xk : σ |= M : τ
[FS:ex-sub]

Θ, x : η; Γ′, x : σk |= M [x1, · · · , xk ← x] : τ Θ; ∆ |= C ⋆ U : (σj , ϵ) η ∝ ϵ
[FS:ex-sub]

Θ; Γ′, ∆ |= M [x1, · · · , xk]← x] ⟨⟨C ⋆ U/x⟩⟩ : τ

where Γ = Γ′, ∆. We may type the following:
[FS:fail]

Θ; Γ′, ∆ |= failỹ : τ

since Γ′, ∆ contain assignments on the free variables in M and B. Therefore, Θ; Γ |=
failỹ : τ , by applying [FS:sum], it follows that Θ; Γ |=

∑
Bi∈PER(B) failỹ : τ ,as required.

8. Rule [RS:Fail!].
Then MTU/xW where head(M) = x[i] and B = Ui = 1! and the reduction is:

head(M) = x[i] Ui = 1! ỹ = lfv(M)
[RS:Fail!]

MTU/xW −→M{|fail∅/x[i]|}TU/xW

with M′ = M{|fail∅/x[i]|}TU/xW. By hypothesis, one has the derivation:

Θ, x : η; Γ |= M : τ Θ; - |= U : ϵ η ∝ ϵ
[FS:Esub!] Θ; Γ |= MTU/xW : τ

By Lemma 49, there exists a derivation Π1 of Θ, x! : η; Γ′ |= M{|fail∅/x[i]|} : τ . Thus,

42 Unrestricted Resources in Encoding Functions as Processes

Θ, x! : η; Γ |= M{|fail∅/x[i]|} : τ Θ; - |= U : ϵ η ∝ ϵ
[FS:Esub!]

Θ; Γ |= M{|fail∅/x[i]|}TU/xW : τ

9. Rule [RS:Cons1].
Then M = failx̃ B where B = *N1 + · · · · · *Nk+ and the reduction is:

ỹ = lfv(C)
[RS:Cons1]

failx̃ C ⋆ U −→
∑

PER(C)

failx̃⊎ỹ

and M′ =
∑

PER(B) failx̃∪ỹ. Since Γ |= M : τ , one has the derivation:

[F:fail]
Θ; Γ′ |= failx̃ : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ

[F:app]
Θ; Γ′, ∆ |= failx̃ B : τ

Hence Γ = Γ′, ∆ and we may type the following:

[F:fail]
Θ; Γ |= failx̃⊎ỹ : τ · · ·

[F:fail]
Θ; Γ |= failx̃⊎ỹ : τ

[F:sum]
Θ; Γ |=

∑
PER(C) failx̃⊎ỹ : τ

The proof for the cases of [RS:Cons2], [RS:Cons3] and [RS:Cons4] proceed similarly

◀

E Appendix to Subsection 4.3

E.1 Encodability Criteria
We follow the criteria in [9], a widely studied abstract framework for establishing the quality
of encodings. A language L is a pair: a set of terms and a reduction semantics −→ on terms
(with reflexive, transitive closure denoted ∗−→). A correct encoding translates terms of a
source language L1 = (M,−→1) into terms of a target language L2(P,−→2) by respecting
certain criteria. The criteria in [9] concern untyped languages; because we treat typed
languages, we follow [14] in requiring that encodings satisfy the following criteria:
1. Type preservation: For every well-typed M , it holds that JMK is well-typed.
2. Operational Completeness: For every M, M ′ such that M

∗−→1 M ′, it holds that
JMK ∗−→2≈2 JM ′K.

3. Operational Soundness: For every M and P such that JMK ∗−→2 P , there exists an
M ′ such that M −→∗

1 M ′ and P
∗−→2≈2 JM ′K.

4. Success Sensitiveness: For every M , it holds that M✓1 if and only if JMK✓2, where
✓1 and ✓2 denote a success predicate in M and P, respectively.

In addition to these semantic criteria, we shall also consider compositionality: a composite
source term is encoded as the combination of the encodings of its sub-terms. Success
sensitiveness complements completeness and soundness, giving information about observable
behaviors. The so-called success predicates ✓1 and ✓2 serve as a minimal notion of observables;
the criterion then says that observability of success of a source term implies observability of
success in the corresponding target term, and vice-versa.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 43

E.2 Correctness of L · M◦

The correctness of the encoding from L · M◦ from uλ ⊕ to uλ̂ ⊕ relies on an encoding on contexts
(Def. 51), auxiliary propositions (Propositions 52 and 53) for well-formedness preservation
(Theorema 54), operational soundness (Theorem 56) and completeness (Theorem 57), and
success sensitivity (Theorem 61).

▶ Definition 51 (Encoding on Contexts). We define an encoding {{·}} on contexts:

{{Θ}} = Θ {{∅}} = ∅
{{x : τ, Γ}} = x : τ, {{Γ}} (x ̸∈ dom(Γ))

{{x : τ, · · · , x : τ, Γ}} = x : τ ∧ · · · ∧ τ, {{Γ}} (x ̸∈ dom(Γ))

▶ Proposition 52. Let M, N be terms. We have:
1. LM{|N/x|}M• = LMM•{|LNM•/x|}.
2. LM⟨x̃/x⟩M• = LMM•⟨x̃/x⟩, where x̃ = x1, . . . , xk is sequence of pairwise distinct fresh

variables.

Proof. By induction of the structure of M . ◀

▶ Proposition 53 (Well-formedness Preservation under Linear Substitutions in uλ ⊕). Let
M ∈ λ ⊕. If Θ; Γ, x : σ |= M : τ and Θ; Γ |= xi : σ then Θ; Γ, xi : σ |= M⟨xi/x⟩ : τ .

Proof. Standard, by induction on the well-formedness derivation rules in Fig. 3. ◀

▶ Proposition 54 (Well-formedness preservation for L − M•). Let B and M be a bag and a
expression in uλ ⊕, respectively.
1. If Θ; Γ |= B : (σk, η) and dom(Γ) = mlfv(B) then {{Θ}}; {{Γ}} |= LBM• : (σk, η) and
∀ x : π ∈ Γ, π = τ for some τ .

2. If Θ; Γ |= M : σ and dom(Γ) = mlfv(M) then {{Θ}}; {{Γ}} |= LMM• : σ and ∀ x : π ∈ Γ, π = τ

for some τ .

▶ Theorem 55 (Well-formedness Preservation for L − M◦). Let B and M be a bag and an
expression in λ ⊕, respectively.
1. If Θ; Γ |= B : (σk, η) and dom(Γ) = fv(B) then {{Θ}}; {{Γ}} |= LBM◦ : (σk, η).
2. If Θ; Γ |= M : σ and dom(Γ) = fv(M) then {{Θ}}; {{Γ}} |= LMM◦ : σ.

Proof. By mutual induction on the typing derivations Θ; Γ |= B : (σk, η) and Θ; Γ |= M : σ,
exploiting Proposition 54. The analysis for bags Part 1. follows directly from the IHs and
will be omitted. As for Part 2. there are two main cases to consider:
1. M = M .

Without loss of generality, assume fv(M) = {x, y}. Then, Θ; x̂ : σj
1, ŷ : σk

2 |= M : τ where
#(x, M) = j and #(y, M) = k, for some positive integers j and k.
After j + k applications of Proposition 53 we obtain:

Θ; x1 : σ1, · · · , xj : σ1, y1 : σ2, · · · , yk : σ2 |= M⟨x̃/x⟩⟨ỹ/y⟩ : τ

where x̃ = x1, · · · , xj and ỹ = y1, · · · , yk. From Proposition 54 one has

{{Θ}}; {{x1 : σ1, · · · , xj : σ1, y1 : σ2, · · · , yk : σ2}} |= LM⟨x̃/x⟩⟨ỹ/y⟩M• : τ

Since {{x1 : σ1, · · · , xj : σ1, y1 : σ2, · · · , yk : σ2}} = x1 : σ1, · · · , xj : σ1, y1 : σ2, · · · , yk : σ2
and {{Θ}} = Θ, we have the following derivation:

44 Unrestricted Resources in Encoding Functions as Processes

Θ; x1 : σ1, · · · , xj : σ1, y1 : σ2, · · · , yk : σ2 |= LM⟨x̃/x⟩⟨ỹ/y⟩M• : τ
[FS : share]

Θ; x : σj
1, y1 : σ2, · · · , yk : σ2 |= LM⟨x̃/x⟩⟨ỹ/y⟩M•[x̃← x] : τ

[FS : share]
Θ; x : σj

1, y : σk
2 |= LM⟨x̃/x⟩⟨ỹ/y⟩M•[x̃← x][ỹ ← y] : τ

By expanding Def. 24, we have

LMM◦ = LM⟨x̃/x⟩⟨ỹ/y⟩M•[x̃← x][ỹ ← y]

which completes the proof for this case.
2. M = M1 + · · ·+ Mn:

This case proceeds easily by IH, using Rule [FS : sum].
◀

▶ Theorem 56 (Operational Completeness). Let M,N be well-formed λ ⊕ expressions. Suppose
N −→[R] M.
1. If [R] = [R : Beta] then LNM◦ −→≤2 LMM◦;
2. If [R] = [R : Fetch] then LNM◦ −→+ LM′M◦, for some M.
3. If [R] ̸= [R : Beta] and [R] ̸= [R : Fetch] then LNM◦ −→ LMM◦.

Proof. We proceed by induction on the the rule from Fig. 1 applied to infer N −→ M,
distinguishing the three cases: (below ˜[x1 ← xn] abbreviates [x̃1 ← x1] · · · [x̃n ← xn]).

1. The rule applied is [R] = [R : Beta].
In this case, N = (λx.M ′)B, where B = C ⋆ U , the reduction is

[R : Beta]
(λx.M)B −→M ⟨⟨B/x⟩⟩

and M = M ′⟨⟨B/x⟩⟩. Below we assume lfv(N) = {x1, . . . , xk} and x̃i = xi1 , . . . , xiji
, where

ji = #(xi, N), for 1 ≤ i ≤ k. On the one hand, we have:

LNM◦ = L(λx.M ′)BM◦ = L((λx.M ′)B)⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1 ← xk]

= L(λx.M
′′
)B′M• ˜[x1 ← xk] = (Lλx.M

′′
M•LB′M•) ˜[x1 ← xk]

= ((λx.LM
′′
⟨ỹ/x⟩M•[ỹ ← x])LB′M•) ˜[x1 ← xk]

−→[RS:Beta] (LM
′′
⟨ỹ/x⟩M•[ỹ ← x]⟨⟨LB′M•

/x⟩⟩) ˜[x1 ← xk] = L

(1)

On the other hand, we have:

LMM◦ = LM ′⟨⟨B/x⟩⟩M◦ = LM ′⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1 ← xn]

= LM
′′
⟨⟨B′

/x⟩⟩M• ˜[x1 ← xk]
(2)

We need to analyze two sub-cases: either #(x, M) = size(C) or #(x, M) = k ≥ 0 and
our first sub-case is not met.
a. If #(x, M) = size(C) then we can reduce L as: (via [RS : Ex− sub])

L −→
∑

Ci∈PER(LCM•)

LM
′′
⟨ỹ/x⟩M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(n)/yn|⟩TU/xW ˜[x1 ← xk] = LMM◦

From (1) and (2) and ỹ = y1 . . . yn, one has the result.
b. Otherwise, #(x, M) = n ≥ 0.

Expanding the encoding in (2) :

LMM◦ = LM
′′
⟨⟨B′

/x⟩⟩M• ˜[x1 ← xk] = (LM
′′
⟨ỹ/x⟩M•[ỹ ← x]⟨⟨LB′M•

/x⟩⟩) ˜[x1 ← xk]

Therefore LMM◦ = L and LNM◦ −→ LMM◦.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 45

2. The rule applied is [R] = [R : Fetchℓ].
Then N = M⟨⟨C ⋆ U/x⟩⟩ and the reduction is

head(M) = x C = *N1+ · · · · · *Nk+ , k ≥ 1 #(x, M) = k
[R : Fetchℓ]

M⟨⟨C ⋆ U/x⟩⟩ −→M{|N1/x|}⟨⟨(C \N1) ⋆ U/x⟩⟩+ · · ·+ M{|Nk/x|}⟨⟨(C \Nk) ⋆ U/x⟩⟩

with M = M{|N1/x|}⟨⟨(C \N1) ⋆ U/x⟩⟩+ · · ·+ M{|Nk/x|}⟨⟨(C \Nk) ⋆ U/x⟩⟩.
Below we assume fv(N) = {x1, . . . , xk} and x̃i = xi1 , . . . , xiji

, where ji = #(xi, N), for
1 ≤ i ≤ k. On the one hand, we have: (last rule is [RS:Fetchℓ])

LNM◦ = LM⟨⟨C ⋆ U/x⟩⟩M◦ = LM⟨⟨C ⋆ U/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1 ← xk]

= LM ′⟨⟨C′ ⋆ U/x⟩⟩M• ˜[x1 ← xk]

=
∑

Ci∈PER(LC′M•)

(LM ′⟨ỹ/x⟩M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

=
∑

Ci∈PER(LC′M•)

(LM ′′M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

−→
∑

Ci∈PER(LC′M•)

(LM ′′{|Ci(1)/y1|}M•⟨|Ci(2)/y2|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

= L

We assume for simplicity that head(M ′′) = y1 On the other hand, we have:

LMM◦ = LM{|N1/x|}⟨⟨(C \N1) ⋆ U/x⟩⟩+ · · ·+ M{|Nk/x|}⟨⟨(C \Nk) ⋆ U/x⟩⟩M◦

=
∑

Ci∈PER(LC′M•)

(LM ′′{|Ci(1)/y1|}M•⟨|Ci(2)/y2|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

= L

From these developments from LNM◦ and LMM◦ , and ỹ = y1 . . . yn, one has the result.
3. The rule applied is [R] = [R : Fetch!].

Then N = M⟨⟨C ⋆ U/x⟩⟩ and the reduction is

head(M) = x[i] Ui = *N+!
[R : Fetch!]

M ⟨⟨C ⋆ U/x⟩⟩ −→M{|N/x[i]|}⟨⟨C ⋆ U/x⟩⟩

with M = M{|N/x[i]|}⟨⟨C ⋆ U/x⟩⟩. Below we assume fv(N) = {x1, . . . , xk} and x̃i =
xi1 , . . . , xiji

, where ji = #(xi, N), for 1 ≤ i ≤ k.
On the one hand, we have: (the last rule is [RS : Fetch!])

LNM◦ = LM⟨⟨C ⋆ U/x⟩⟩M◦ = LM⟨⟨C ⋆ U/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1 ← xk]

= LM ′⟨⟨C′ ⋆ U/x⟩⟩M• ˜[x1 ← xk]]

=
∑

Ci∈PER(LC′M•)

(LM ′⟨ỹ/x⟩M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

=
∑

Ci∈PER(LC′M•)

(LM ′′M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

−→
∑

Ci∈PER(LC′M•)

(LM ′′{|N/x[i]|}M•⟨|Ci(2)/y2|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk] = L

(3)

46 Unrestricted Resources in Encoding Functions as Processes

On the other hand, assuming for simplicity that head(M ′′) = x[i] and Ui = N , we have

LMM◦ = LM{|N/x[i]|}⟨⟨C ⋆ U/x⟩⟩M◦

=
∑

Ci∈PER(LC′M•)

(LM ′′{|N/x[i]|}M•⟨|Ci(2)/y2|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk] = L (4)

From (3) and (4), one has the result.
4. The rule applied is [R] ̸= [R : Beta] and [R] ̸= [R : Fetch]. There are two possible cases:

a. [R] = [R : Failℓ]
Then N = M⟨⟨C ⋆ U/x⟩⟩ and the reduction is

#(x, M) ̸= size(C) z̃ = (mlfv(M)\ x) ⊎mlfv(C)
[R : Failℓ]

M⟨⟨C ⋆ U/x⟩⟩ −→
∑

PER(C) failz̃

where M =
∑

PER(C) failỹ. Below assume fv(N) = {x1, . . . , xn}.
On the one hand, we have:

LNM◦ = LM⟨⟨C ⋆ U/x⟩⟩M◦ = LM⟨⟨C ⋆ U/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1 ← xn]

= LM ′⟨⟨C′ ⋆ U/x⟩⟩M• ˜[x1 ← xn]

= LM ′⟨y1, · · · , yk/x⟩M•[y1, · · · , yk ← x]⟨⟨C′ ⋆ U/x⟩⟩ ˜[x1 ← xn]

−→[RS:Failℓ]
∑

PER(C)

failỹ,x̃1,··· ,x̃n ˜[x1 ← xn] = L

On the other hand, we have:

LMM◦ =
∑

PER(C)

Lfailz̃M◦ =
∑

PER(C)

failỹ,x̃1,··· ,x̃n ˜[x1 ← xn] = L

Therefore, LNM◦ −→ LMM◦ and the result follows.
b. [R] = [R : Fail!]

Then N = M⟨⟨C ⋆ U/x⟩⟩ and the reduction is

#(x, M) = size(C) Ui = 1! head(M) = x[i]
[R : Fail!]

M⟨⟨C ⋆ U/x⟩⟩ −→M{|fail∅/x[i]|}⟨⟨C ⋆ U/x⟩⟩

where M = M{|fail∅/x[i]|}⟨⟨C ⋆ U/x⟩⟩.
Below we assume fv(N) = {x1, . . . , xk} and x̃i = xi1 , . . . , xiji

, where ji = #(xi, N), for
1 ≤ i ≤ k.
On the one hand, we have: (the last rule applied was [RS : Fail!])

LNM◦ = LM⟨⟨C ⋆ U/x⟩⟩M◦ = LM⟨⟨C ⋆ U/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1 ← xk]

= LM ′⟨⟨C′ ⋆ U/x⟩⟩M• ˜[x1 ← xk]

=
∑

Ci∈PER(LC′M•)

(LM ′⟨ỹ/x⟩M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

=
∑

Ci∈PER(LC′M•)

(LM ′′M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

−→
∑

Ci∈PER(LC′M•)

(LM ′′{|fail∅/x[i]|}M•⟨|Ci(2)/y2|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

= L

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 47

We assume for simplicity that head(M ′′) = x[i]. On the other hand, we have:

LMM◦ = LM{|fail∅/x[i]|}⟨⟨C ⋆ U/x⟩⟩M◦

=
∑

Ci∈PER(LC′M•)

(LM ′′{|fail∅/x[i]|}M•⟨|Ci(2)/y2|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW) ˜[x1 ← xk]

= L

From the LMM◦ and LNM◦ above one has the result.
c. [R] = [R : Cons1].

Then N = (failz̃) C ⋆ U and the reduction is

z̃ = mlfv(C)
[R : Cons1]

(failỹ) C ⋆ U −→
∑

PER(C) failỹ⊎z̃

and M′ =
∑

PER(B) failỹ⊎z̃. Below we assume fv(N) = {x1, . . . , xn}.
On the one hand, we have:

LNM◦ = Lfailỹ BM◦ = Lfailỹ C ⋆ U⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1 ← xn]

= Lfailỹ′
C ′ ⋆ UM• ˜[x1 ← xn] = Lfailỹ′M• LC ′ ⋆ UM• ˜[x1 ← xn]

= failỹ′ LC ′ ⋆ UM• ˜[x1 ← xn] −→[RS:Cons1]
∑

PER(B)

failỹ′∪z̃′ ˜[x1 ← xn] = L

Where ỹ′ ∪ z̃′ = x̃1, · · · , x̃n. On the other hand, we have:

LMM◦ =
∑

PER(B)

Lfailỹ′⊎z̃′M• ˜[x1 ← xn] =
∑

PER(B)

failỹ′∪z̃′ ˜[x1 ← xn] = L

Therefore, LNM◦ −→ L = LMM◦, and the result follows.
d. [R] = [R : Cons2]

Then N = failỹ ⟨⟨C ⋆ U/z⟩⟩ and the reduction is

#(z, ỹ) = size(C) z̃ = mlfv(C)
[R : Cons2]

failỹ ⟨⟨C ⋆ U/z⟩⟩ −→
∑

PER(C)

fail(x̃\z)⊎z̃

and M =
∑

PER(C) fail(ỹ\x)⊎z̃. Below we assume fv(N) = {x1, . . . , xn}.
On the one hand, we have:

LNM◦ = Lfailỹ ⟨⟨C ⋆ U/z⟩⟩M◦ = Lfailỹ ⟨⟨C ⋆ U/z⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1 ← xn]

=
∑

Ci∈PER(LC′M•)

Lfailỹ′⟨ỹ/x⟩M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW ˜[x1 ← xn]

−→∗
[RS:Cons3]

∑
Ci∈PER(LC′M•)

Lfail(ỹ′\ỹ)⊎z̃M•TU/xW ˜[x1 ← xn]

−→∗
[RS:Cons4]

∑
Ci∈PER(LC′M•)

Lfail(ỹ′\ỹ)⊎z̃M• ˜[x1 ← xn]

(5)

48 Unrestricted Resources in Encoding Functions as Processes

As ỹ consists of free variables, we have that in failỹ ⟨⟨C ⋆ U/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩
the substitutions also occur on ỹ resulting in a new ỹ′ where all xi’s are replaced with
their fresh components in x̃i. Similarly ỹ′′ is ỹ′ with each x replaced with a fresh yi.
On the other hand, we have:

LMM◦ = L
∑

PER(C)

fail(ỹ\x)⊎z̃M◦ =
∑

Ci∈PER(LC′M•)

Lfail(ỹ′\ỹ)⊎z̃M• ˜[x1 ← xn] (6)

The reductions in (5) and (6) lead to identical expressions.

As before, the reduction via rule [R] could occur inside a context (cf. Rules [R : TCont] and
[R : ECont]). We consider only the case when the contextual rule used is [R : TCont]. We have
N = C[N]. When we have C[N] −→[R] C[M] such that N −→[R] M we need to show that
LC[N]M◦ −→j LC[M]M◦for some j dependent on [R]. Firstly let us assume [R] = [R : Cons2]
then we take j = 1. Let us take C[·] to be [·]B and fv(NB) = {x1, · · · , xk} then

LNBM◦ = LNB⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1 ← xk] = LN ′B′M• ˜[x1 ← xk] = LN ′M•LB′M• ˜[x1 ← xk]

We take N ′B′ = NB⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩, we have by the IH that LNM• −→ LMM• and hence
we can deduce that LN ′M• −→ LM ′M• where M ′B′ = MB⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩. Finally we have
LN ′M•LB′M• ˜[x1 ← xk] −→ LM ′M•LB′M• ˜[x1 ← xk] and hence LC[N]M◦ −→ LC[M]M◦. ◀

▶ Theorem 57 (Operational Soundness). Let N be a well-formed uλ ⊕ expression. Suppose
LNM◦ −→ L. Then, there exists N′ such that N −→[R] N′ and

1. If [R] = [R : Beta] then L −→≤1 LN′M◦;
2. If [R] ̸= [R : Beta] then L −→∗ LN′′M◦, for N′′ such that N′ ≡λ N′′.

Proof. By induction on the structure of N:

1. Cases N = x, N = x[i], failỹ and N = λx.N , are trivial, since no reductions can be
performed.

2. N = NB:
Suppose lfv(NB) = {x1, · · · , xn}. Then,

LNM◦ = LNBM◦ = LNB⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1 ← xn] = LN ′B′M• ˜[x1 ← xn]

= LN ′M•LB′M• ˜[x1 ← xn]
(7)

where x̃i = xi1, . . . , xiji , for 1 ≤ i ≤ n. By the reduction rules in Fig. 13 there are three
possible reductions starting in N:
a. LN ′M•LB′M• ˜[x1 ← xn] reduces via a [RS : Beta].

In this case N = λx.N1, and the encoding in (7) gives N ′ = N⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩,
which implies N ′ = λx.N

′

1 and the following holds:

LN ′M• = L(λx.N ′
1)M• = (λx.LN ′

1⟨ỹ/x⟩M•[ỹ ← x]) = (λx.LN
′′
M•[ỹ ← x])

Thus, we have the following [RS : Beta] reduction from (7):

LNM◦ = LN ′M•LB′M• ˜[x1 ← xn] = (λx.LN ′′M•[ỹ ← x]LB′M•) ˜[x1 ← xn]

−→[RS:Beta] LN
′′
M•[ỹ ← x]⟨⟨LB′M•

/x⟩⟩ ˜[x1 ← xn] = L
(8)

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 49

Notice that the expression N can perform the following [R : Beta] reduction:

N = (λx.N1)B −→[R:Beta] N1⟨⟨B/x⟩⟩

Assuming N′ = N1⟨⟨B/x⟩⟩ and we take B = C ⋆ U , there are two cases:

i. #(x, M) = size(C) = k.
On the one hand,

LN′M◦ = LN1⟨⟨B/x⟩⟩M◦ = LN1⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1 ← xn]

= LN ′
1⟨⟨B

′
/x⟩⟩M• ˜[x1 ← xn]

=
∑

Ci∈PER(LC′M•)

LN ′
1⟨y1, · · · , yk/x⟩M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW ˜[x1 ← xn]

=
∑

Ci∈PER(LC′M•)

LN ′′
1 M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW ˜[x1 ← xn]

On the other hand, via application of rule [RS : Ex-Sub]

L = LN ′′M•[ỹ ← x]⟨⟨LB′M•
/x⟩⟩ ˜[x1 ← xn]

−→
∑

Ci∈PER(LCM•)

LN ′′
1 M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(k)/yk|⟩TU/xW ˜[x1 ← xn] = LN′M◦

and the result follows.
ii. Otherwise #(x, N1) ̸= size(C).

In this case,

LN′M◦ = LN1⟨⟨B/x⟩⟩M◦ = LN1⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃n/xn⟩M• ˜[x1 ← xn]

= LN ′
1⟨⟨B

′
/x⟩⟩M• ˜[x1 ← xn] = LN

′′
M•[ỹ ← x]⟨⟨LB′M•

/x⟩⟩ ˜[x1 ← xn] = L

From (8): LNM◦ −→ L = LN′M◦ and the result follows.

b. LN ′M•LB′M• ˜[x1 ← xn] reduces via a [RS : Cons1].
In this case, N = failỹ, and the encoding in (7) gives N ′ = N⟨x̃1/x1⟩ . . . ⟨x̃n/xn⟩,
which implies N ′ = failỹ′ , we let B = C ⋆ U and the following:

LNM◦ = LN ′M•LB′M• ˜[x1 ← xn] = Lfailỹ′M•LB′M• ˜[x1 ← xn]

= failỹ′LB′M• ˜[x1 ← xn] −→
∑

PER(C)

failỹ′⊎z̃ ˜[x1 ← xn], where z̃ = lfv(C ′).

The expression N can perform the reduction:

N = failỹ B −→[R:Cons1]
∑

PER(C)

failỹ⊎z̃, where z̃ = mlfv(C)

Thus, L = LN′M◦ and so the result follows.
c. Suppose that LN ′M• −→ LN ′′M•. This case follows from the induction hypothesis.

50 Unrestricted Resources in Encoding Functions as Processes

3. N = N⟨⟨B/x⟩⟩:
Suppose lfv(N⟨⟨B/x⟩⟩) = {x1, · · · , xk}. Then,

LNM◦ = LN⟨⟨B/x⟩⟩M◦ = LN⟨⟨B/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1 ← xk]

= LN ′⟨⟨B′
/x⟩⟩M• ˜[x1 ← xk]

(9)

Let us consider the two possibilities of the encoding where we take B = C ⋆ U :

a. Where #(x, M) = size(B) = k

Then we continue equation (9) as follows

LNM◦ = LN ′⟨⟨B′
/x⟩⟩M•[˜[x1 ← xk]

=
∑

Ci∈PER(LC′M•)

LN ′⟨y1, · · · , yn/x⟩M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(n)/yn|⟩TU/xW ˜[x1 ← xk]

=
∑

Ci∈PER(LC′M•)

LN ′′M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(n)/yn|⟩TU/xW ˜[x1 ← xk]

(10)

There are five possible reductions that can take place, these being [RS:Fetchℓ],
[RS:Fetch!], [RS:Fail!] , [RS : Cons3] and when we apply the [RS : Cont] rules
i. Suppose that head(N ′′) = y1 and for simplicity we assume C ′ has only one element

N1 then from (10) and buy letting C ′ = *N ′
1+ we have

LNM◦ = LN ′′M•⟨|{{N ′
1}}/y1|⟩TU/xW ˜[x1 ← xk]

−→ LN
′′
M•{|{{N ′

1}}/y1|}TU/xW ˜[x1 ← xk] = L

Also, N = N⟨⟨*N1 + ⋆U/x⟩⟩ −→ N{|N1/x|}⟨⟨1 ⋆ U/x⟩⟩ = N′. Then L′ = LN′M◦ and the
result follows.

ii. Suppose that head(N ′′) = x[i] and then from (10) we have

LNM◦ = LN ′′M•⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(n)/yn|⟩TU/xW ˜[x1 ← xk]

−→ LN
′′
M•{|Ui/x[i]|}⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(n)/yn|⟩TU/xW ˜[x1 ← xk] = L

We also have that N = N⟨⟨C ⋆ U/x⟩⟩ −→ N{|Uind/x!|}⟨⟨C ⋆ U/x⟩⟩ = N′.

Then, L′ = LN′M◦ and so the result follows.
iii. Suppose that N ′′ = failz̃′ proceed similarly then from (10)

LNM◦ =
∑

Ci∈PER(LC′M•)

failz̃′⟨|Ci(1)/y1|⟩ · · · ⟨|Ci(n)/yn|⟩TU/xW ˜[x1 ← xk]

−→∗
∑

Ci∈PER(LC′M•)

fail(z̃′\y1,··· ,yn)⊎ỹTU/xW ˜[x1 ← xk]

−→∗
∑

Ci∈PER(LC′M•)

fail(z̃′\y1,··· ,yn)⊎ỹ ˜[x1 ← xk] = L′

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 51

where ỹ = lfv(Ci(1)) ⊎ · · · ⊎ lfv(Ci(n)). We also have that

N = failz̃⟨⟨B/x⟩⟩ −→ fail(z̃\x)⊎ỹ = N′, where ỹ = mfv(B).

Then, L′ = LN′M◦ and so the result follows.
iv. Suppose that N ′′ −→ N ′′′. This case follows by the induction hypothesis

b. Otherwise, we continue from equation (9), where #(x, M) ̸= k, as follows

LNM◦ = LN ′⟨⟨B′
/x⟩⟩M• ˜[x1 ← xk]

= LN ′⟨y1. · · · , yk/x⟩M•[y1. · · · , yk ← x]⟨⟨LB′M•
/x⟩⟩ ˜[x1 ← xk]

= LN ′′M•[y1. · · · , yk ← x]⟨⟨LB′M•
/x⟩⟩ ˜[x1 ← xk]

We can perform the reduction

LNM◦ = LN ′′M•[y1. · · · , yk ← x]⟨⟨LB′M•
/x⟩⟩ ˜[x1 ← xk]

−→
∑

Ci∈PER(C)

failz̃′ ˜[x1 ← xk], where z̃′ = fv(N ′′) ⊎ fv(C ′) = L′

We also have that

N = N⟨⟨C/x⟩⟩ −→
∑

PER(C)

failz̃ = N′, where z̃ = mlfv(M) ⊎mlfv(C).

Then, L′ = LN′M◦ and so the result follows.

4. N = N1 + N2:
Then this case holds by the induction hypothesis.

◀

E.3 Success Sensitiveness of L · M◦

We now consider success sensitiveness, a property that complements (and relies on) operational
completeness and soundness. For the purposes of the proof, we consider the extension of
uλ ⊕ and uλ̂ ⊕ with dedicated constructs and predicates that specify success.

▶ Definition 58. We extend the syntax of terms for uλ ⊕ and uλ̂ ⊕ with the same ✓ construct.
In both cases, we assume ✓ is well formed. Also, we also define head(✓) = ✓ and L✓M• = ✓

An expression M has success, denoted M ⇓✓, when there is a sequence of reductions from
M that leads to an expression that includes a summand that contains an occurrence of ✓ in
head position.

▶ Definition 59 (Success in uλ ⊕ and uλ̂ ⊕). In uλ ⊕ and uλ̂ ⊕, we define M ⇓✓ if and only
if there exist M1, · · · , Mk such that M −→∗ M1 + · · · + Mk and head(M ′

j) = ✓, for some
j ∈ {1, . . . , k} and term M ′

j such that Mj ≡λ M ′
j.

▶ Notation 7. We use the notation head∑(M) to be that ∀Mi, Mj ∈ M we have that
head(Mi) = head(Mj) hence we say that head∑(M) = head(Mi) for some Mi ∈M

52 Unrestricted Resources in Encoding Functions as Processes

▶ Proposition 60 (Preservation of Head term). The head of a term is preserved when applying
the encoding L-M•. That is to say:

∀M ∈ uλ ⊕ head(M) = ✓ ⇐⇒ head∑(LMM◦) = ✓

Proof. By induction on the structure of M . We only need to consider terms of the following
form.

1. When M = ✓ the case is immediate.
2. When M = NB with fv(NB) = {x1, · · · , xk} and #(xi, M) = ji we have that:

head∑(LNBM◦) = head∑(LNB⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M•[x̃1 ← x1] · · · [x̃k ← xk])

= head∑(LNBM•) = head∑(LNM•)

and head(NB) = head(N), by the IH we have head(N) = ✓ ⇐⇒ head∑(LNM•) = ✓.
3. When M = N⟨⟨C ⋆ U/x⟩⟩, we must have that #(x, M) = size(C) for the head of this term

to be ✓. Let fv(N⟨⟨C ⋆ U/x⟩⟩) = {x1, · · · , xk} and #(xi, M) = ji. We have that:

head∑(LN⟨⟨C ⋆ U/x⟩⟩M◦) = head∑(LN⟨⟨C ⋆ U/x⟩⟩⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M• ˜[x1 ← xk])

= head∑(LN⟨⟨C ⋆ U/x⟩⟩M•)

= head∑(
∑

Ci∈PER(LCM•)

LN⟨x̃/x⟩M•⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(k)/xk|⟩TU/xW)

= head∑(LN⟨x̃/x⟩M•⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(k)/xk|⟩TU/xW)

= head∑(LN⟨x̃/x⟩M•)

and head(N⟨⟨B/x⟩⟩) = head(N), by the IH head(N) = ✓ ⇐⇒ head∑(LNM•) = ✓.
◀

▶ Theorem 61 (Success Sensitivity). Let M be a well-formed expression. We have M ⇓✓ if
and only if LMM◦ ⇓✓.

Proof. By induction on the structure of expressions uλ ⊕ and uλ̂ ⊕.

1. Suppose that M ⇓✓. We will prove that LMM◦ ⇓✓.
By operational completeness (Theorem 56) we have that if M −→[R] M′ then

a. If [R] = [R : Beta] then LMM◦ −→≤2 LM′M◦;
b. If [R] = [R : Fetch] then LMM◦ −→+ LM′′M◦, for some M′′ such that M′ ≡λ M′′.
c. If [R] ̸= [R : Beta] and [R] ̸= [R : Fetch] then LMM◦ −→ LM′M◦;

Notice that neither our reduction rules (in Def. 13), or our congruence ≡λ (in Fig. 23),
or our encoding (L✓M◦ = ✓) create or destroy a ✓ occurring in the head of term. By
Proposition 60 the encoding preserves the head of a term being ✓. The encoding acts
homomorphically over sums, therefore, if a ✓ appears as the head of a term in a sum, it
will stay in the encoded sum. We can iterate the operational completeness lemma and
obtain the result.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 53

2. Suppose that LMM◦ ⇓✓. We will prove that M ⇓✓.
By operational soundness (Theorem 57) we have that if LMM◦ −→ L then there exist M′

such that M −→[R] M′ and

a. If [R] = [R : Beta] then L −→≤1 LM′M◦;
b. If [R] ̸= [R : Beta] then L −→∗ LM′′M◦, for M′′ such that M′ ≡λ M′′.

Since LMM◦ −→∗ M1 + . . . + Mk, and head(M ′
j) = ✓, for some j and M ′

j , s.t. Mj ≡λ M ′
j .

Notice that if LMM◦ is itself a term headed with ✓, say head(LMM◦) = ✓, then M is itself
headed with ✓, from Proposition 60. In the case LMM◦ = M1 + . . . + Mk, k ≥ 2, and ✓
occurs in the head of an Mj , the reasoning is similar. M has one of the forms:
a. M = N1, then N1 must contain the subterm M⟨⟨C ⋆ U/x⟩⟩ and size(C) = #(x, M).

The encoding of M is
LM⟨⟨C ⋆ U/x⟩⟩M◦ =

∑
Ci∈PER(LCM•) LM⟨x̃/x⟩M•⟨|Ci(1)/xi|⟩ . . . ⟨|Ci(k)/xi|⟩TU/xW. We can

apply Proposition 60 and the result follows.
b. M = N1 + . . . + Nl for l ≥ 2.

This reasoning is similar and uses the fact that the encoding distributes homomorphic-
ally over sums.

In the case where LMM◦ −→+ M1 + . . . + Mk, and head(M ′
j) = ✓, for some j and M ′

j ,
such that Mj ≡λ M ′

j , the reasoning is similar to the previous, since our reduction rules
do not introduce/eliminate ✓ occurring in the head of terms.

◀

F Appendix to Subsection 4.4

F.1 Type Preservation
▶ Lemma 62. JσjK(τ1,m) = JσkK(τ2,n) and J(σj , η)K(τ1,m) = J(σk, η)K(τ2,n) hold, provided that
τ1, τ2, n and m are as follows:

1. If j > k then take τ1 to be an arbitrary type, m = 0, take τ2 to be σ and n = j − k.
2. If j < k then take τ1 to be σ, m = k − j, take τ2 to be an arbitrary type and n = 0.
3. Otherwise, if j = k then take m = n = 0. In this case, τ1.τ2 are unimportant.

Proof. We shall prove the case of (1) for the first equality, and the case for the second
equality and of (2) are analogous. The case of (3) follows by the encoding on types in Def. 28.

Hence take j, k, τ1, τ2, m, n satisfying the conditions in (1): j > k, τ1 to be an arbitrary
type, m = 0, τ2 = σ and n = j − k. We want to show that JσjK(τ1,0) = JσkK(σ,n). In fact,

JσkK(σ,n) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσk−1K(σ,n)))))
Jσk−1K(σ,n) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσk−2K(σ,n)))))

...
Jσ1K(σ,n) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK(σ,n)))))

and
JσjK(τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσj−1K(τ1,0)))))

Jσj−1K(τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσj−2K(τ1,0)))))
...

Jσj−k+1K(τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσj−kK(τ1,0)))))

54 Unrestricted Resources in Encoding Functions as Processes

Notice that n = j − k, hence we wish to show that JσnK(τ1,0) = JωK(σ,n). Finally,

JωK(σ,n) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK(σ,n−1)))))
JωK(σ,n−1) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK(σ,n−2)))))

...
JωK(σ,1) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK(σ,0)))))
JωK(σ,0) = ⊕((N1) O (⊕N1)

and

JσnK(τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσn−1K(τ1,0)))))
Jσn−1K(τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσn−2K(τ1,0)))))

...
Jσ1K(τ1,0) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JωK(τ1,0)))))
JωK(τ1,0) = ⊕((N1) O (⊕N1)

◀

▶ Lemma 63. If η ∝ ϵ Then
1. If JMKu ⊢ JΓK; JΘK, x! : JηK then JMKu ⊢ JΓK; JΘK, x! : JϵK.
2. If JMKu ⊢ JΓK, u : J(σj , η)→ τK; JΘK then JMKu ⊢ JΓK, u : J(σj , ϵ)→ τK; JΘK.

Proof. 1. We consider the first case where if JMKu ⊢ JΓK; JΘK, x! : JηK then JMKu ⊢
JΓK; JΘK, x! : JϵK and by Def. 28, JηK = &ηi∈η{li; JηiK}. We now proceed by induction on
the structure of M :
a. M = x.

By Fig. 8, JxKu = x.some; [x↔ u]. We have the following derivation:

[(Tid)]
[x↔ u] ⊢ x : A, u : A; JΘK, x! : JηK

[TNx
d)]

x.some; [x↔ u] ⊢ x : NA, u : A; JΘK, x! : JηK

For some type A. Notice the derivation is independent of x! : JηK , hence holds when
M = x. Note that we do not consider M = y where y ̸= x, this is due to the case
being trivial due to the typing of y being independent on x.

b. M = x[ind].
By Fig. 8, Jx[ind]Ku = x!?(xi).xi.lind; [xi ↔ u]. We have the following derivation:

[(Tid)]
[xi ↔ u] ⊢ u : JτK, xi : JηindK; x! : &ηi∈η{li; JηiK}, JΘK

[T⊕i]
xi.lind; [xi ↔ u] ⊢ u : JτK, xi : ⊕ηi∈η{li; JηiK}; x! : ⊕ηi∈η{li; JηiK}, JΘK

[Tcopy]
x!?(xi).xi.lind; [xi ↔ u] ⊢ u : JτK; x! : ⊕ηi∈η{li; JηiK}, JΘK

On the other hand we have derivation:

[(Tid)]
[xi ↔ u] ⊢ u : JτK, xi : JϵindK; x! : &ϵi∈ϵ{li; JϵiK}, JΘK

[T⊕i]
xi.lind; [xi ↔ u] ⊢ u : JτK, xi : ⊕ϵi∈ϵ{li; JϵiK}; x! : ⊕ϵi∈ϵ{li; JϵiK}, JΘK

[Tcopy]
x!?(xi).xi.lind; [xi ↔ u] ⊢ u : JτK; x! : ⊕ϵi∈ϵ{li; JϵiK}, JΘK

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 55

By η ∝ ϵ we have that ϵind = ηind. Similarly for the case of M = y[ind] with y ̸= x we
use the argument that the typing of y is independent on x.

c. M = M ′[ỹ ← y].
If y = x the case proceeds similarly to (1a) otherwise we proceed by induction on M ′.

d. M = λx.(M ′[x̃← x]).
From Def. 26 it follows that
Jλx.M ′[x̃← x]Ku = u.some; u(x).x.some; x(xℓ).x(x!).x.close; JM ′[x̃← x]Ku.
We give the final derivation in parts. The first part we name Π1 derived by:

JM ′[x̃← x]Ku ⊢ u : JτK, JΓ′K, xℓ : JσkK(σ,i); JΘK, x! : JηK
[T⊥]

x.close; JM ′[x̃← x]Ku ⊢ x:⊥, u : JτK, JΓ′K, xℓ : JσkK(σ,i); JΘK, x! : JηK
[T?]

x.close; JM ′[x̃← x]Ku ⊢ x:⊥, u : JτK, JΓ′K, xℓ : JσkK(σ,i), x! :?JηK; JΘK
[TO]

x(x!).x.close; JM ′[x̃← x]Ku ⊢ x : (?JηK) O (⊥), u : JτK, JΓ′K, xℓ : JσkK(σ,i); JΘK
[TO]

x(xℓ).x(x!).x.close; JM ′[x̃← x]Ku ⊢ x : JσkK(σ,i) O ((?JηK) O (⊥)), u : JτK, JΓ′K; JΘK

We take P = x(xℓ).x(x!).x.close; JM ′[x̃← x]Ku and continue the derivation:

Π1
...

P ⊢ x : JσkK(σ,i) O ((?JηK) O (⊥)), u : JτK, JΓ′K; JΘK
[TNx

d]
x.some; P ⊢ x : N(JσkK(σ,i) O ((?JηK) O (⊥))), u : JτK, JΓ′K; JΘK

[TO]
u(x).x.some; P ⊢ u : N(JσkK(σ,i) O ((?JηK) O (⊥))) O JτK, JΓ′K; JΘK

[TNx
d]

u.some; u(x).x.some; P ⊢ u : N(N(JσkK(σ,i) O ((?JηK) O (⊥))) O JτK), JΓ′K; JΘK

By Definition 28 we have that J(σk, η)→ τK = N(N(JσkK(σ,i) O ((?JηK) O (⊥))) O JτK).
In this case we must have that the variable names for x from our hypothesis and x

from M must be distinct.
e. M = (M ′ B), or M = (M [x̃← x])⟨⟨B/x⟩⟩, or M = M ′TU/xW.

The proof follows similarly to that of (1b).
f. M = M ′⟨|N/x|⟩

Case follows by that of (1a) and applying induction hypothesis on JM ′Ku.
g. When M = failx̃ Case follows by that of (1a).

2. If JMKu ⊢ JΓK, u : J(σj , η)→ τK; JΘK then JMKu ⊢ JΓK, u : J(σj , ϵ)→ τK; JΘK follows from
previous case along a similar argument.

◀

▶ Theorem 64 (Type Preservation for J · Ku). Let B and M be a bag and an expression in
uλ̂ ⊕, respectively.
1. If Θ; Γ |= B : (σk, η) then JBKu |= JΓK, u : J(σk, η)K(σ,i); JΘK.
2. If Θ; Γ |= M : τ then JMKu |= JΓK, u : JτK; JΘK.

Proof. The proof is by mutual induction on the typing derivation of B and M, with an
analysis for the last rule applied. Recall that the encoding of types (J− K) has been given in
Def. 28.

56 Unrestricted Resources in Encoding Functions as Processes

1. We have the following derivation where we take B = C ⋆ U :

Θ; Γ |= C : σk Θ; · |= U : η
[FS:bag]

Θ; Γ |= C ⋆ U : (σk, η)

Our encoding gives: JC⋆UKu = x.somelfv(C); x(xℓ).(JCKxℓ | x(x!).(!x!(xi).JUKxi
| x.close)).

In addition, the encoding of (σk, η) is:

J(σk, η)K(σ,i) = ⊕((JσkK(σ,i))⊗ ((!JηK)⊗ (1))) (for some i ≥ 0 and strict type σ)

And one can build the following type derivation (rules from Fig. 6):

JCKxℓ ⊢ JΓK, xℓ : JσkK(σ,i); JΘK

JUKxi ⊢ xi : JηK; JΘK
[T!]

!x!(xi).JUKxi
⊢ x! :!JηK; JΘK

[T1]
x.close ⊢ x : 1; JΘK

[T⊗]
x(x!).(!x!.(xi).JUKxi

| x.close ⊢ x : (!JηK)⊗ (1); JΘK
[T⊗]

x(xℓ).(JCKxℓ | x(x!).(!x!.(xi).JUKxi
| x.close)) ⊢ JΓK, x : (JσkK(σ,i))⊗ ((!JηK)⊗ (1)); JΘK

[T⊕x
w̃
]

x.somelfv(C); x(xℓ).(JCKxℓ | x(x!).(!x!.(xi).JUKxi
| x.close)) ⊢ JΓK, x:J(σk, η)K(σ,i))

Hence true provided both JCKxℓ ⊢ JΓK, xℓ : JσkK(σ,i); JΘK and JUKxi
⊢ xi : JηK; JΘK hold.

Let us consider the two cases:

a. For JCKxℓ ⊢ JΓK, xℓ : JσkK(σ,i); JΘK to hold we must consider two cases on the shape of
C:

i. When C = 1 we may type bags with the [FS:1ℓ] rule.
That is,

[FS:1ℓ] Θ; - |= 1 : ω

Our encoding gives: J1Kxℓ = xℓ.some∅; xℓ(yn).(yn.some; yn.close | xℓ.some∅; xℓ.none).
and the encoding of ω can be either:

A. JωK(σ,0) = N((⊕⊥)⊗ (N⊕⊥)); or
B. JωK(σ,i) = N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK(σ,i−1)))))
And one can build the following type derivation (rules from Fig. 6):

[T1]
yn.close ⊢ yn : 1; JΘK

[TNx
d]

yn.some; yn.close ⊢ yn : N1; JΘK

[TNx]
xℓ.none ⊢ xℓ : NA; JΘK[T⊕x

w̃
]

xℓ.some∅; xℓ.none ⊢ xℓ:⊕NA; JΘK
[T |]

(yn.some; yn.close | xℓ.some∅; xℓ.none) ⊢ yn : N1, xℓ:⊕NA; JΘK
[TO]

xℓ(yn).(yn.some; yn.close | xℓ.some∅; xℓ.none) ⊢ xℓ : (N1) O (⊕NA); JΘK[T⊕x
w̃
]

xℓ.some∅; xℓ(yn).(yn.some; yn.close | xℓ.some∅; xℓ.none) ⊢ xℓ:⊕ ((N1) O (⊕NA)); JΘK

Since A is arbitrary, we can take A = 1 for JωK(σ,0) and A = ((NJσK) O (JωK(σ,i−1)))
for JωK(σ,i), in both cases, the result follows.

ii. When C = *M + ·C ′ we may type bags with the [FS:bagℓ] rule.

Θ; Γ′ |= M : σ Θ; ∆ |= C ′ : σk

[FS:bagℓ]
Θ; Γ′, ∆ |= *M + ·C ′ : σk

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 57

Where Γ = Γ′, ∆. To simplify the proof, we will consider k = 3.
By IH we have

JMKxi
⊢ JΓ′K, xi : JσK; JΘK JC ′Kxℓ ⊢ J∆K, xℓ : Jσ ∧ σK(τ,j); JΘK

By Def. 26,

J * M + ·C ′Kxℓ =xℓ.somelfv(*M+·C); xℓ(yi).xℓ.someyi,lfv(*M+·C); xℓ.some; xℓ(xi).
(xi.somelfv(M); JMKxi | JC ′Kxℓ | yi.none)

(11)

Let Π1 be the derivation:

JMKxi
⊢JΓ′K, xi : JσK; JΘK[T⊕x

w̃
]

xi.somelfv(M); JMKxi
⊢ JΓ′K, xi : ⊕JσK; JΘK

[TNx]
yi.none ⊢ yi : N1; JΘK

[T |]
xi.somelfv(M); JMKxi | yi.none︸ ︷︷ ︸

P1

⊢ JΓ′K, xi : ⊕JσK, yi : N1; JΘK

Let P1 = (xi.somelfv(M); JMKxi | yi.none), in the the derivation Π2 below:

Π1 JC ′Kxℓ ⊢ J∆K, xℓ : Jσ ∧ σK(τ,j); JΘK
[T⊗]

xℓ(xi).(P1 | JC ′Kxℓ) ⊢ JΓ′K, J∆K, yi : N1, xℓ : (⊕JσK)⊗ (Jσ ∧ σK(τ,j)); JΘK
[TNx

d]
xℓ.some; xℓ(xi).(P1 | JC ′Kxℓ)︸ ︷︷ ︸

P2

⊢ JΓ′K, J∆K, yi : N1, xℓ : N((⊕JσK)⊗ (Jσ ∧ σK(τ,j))); JΘK

Let P2 = (xℓ.some; xℓ(xi).(P1 | JAKxℓ)) in the derivation below:

Π2
...

P2 ⊢ JΓK, yi : N1, xℓ : N((⊕JσK)⊗ (Jσ ∧ σK(τ,j))); JΘK
[T⊕x

w̃
]

xℓ.someyi,lfv(*M+·C′); P2 ⊢ JΓK, yi : N1, xℓ : ⊕N((⊕JσK)⊗ (Jσ ∧ σK(τ,j))); JΘK
[TO]

xℓ(yi).xℓ.someyi,lfv(*M+·C′); P2 ⊢ JΓK, xℓ : (N1) O (⊕N((⊕JσK)⊗ (Jσ ∧ σK(τ,j)))); JΘK
[T⊕x

w̃
]

J * M + ·C ′Kxℓ ⊢ JΓK, xℓ : ⊕((N1) O (⊕N((⊕JσK)⊗ (Jσ ∧ σK(τ,j))))); JΘK
From Definitions 21 (duality) and 28, we infer:

⊕((N1) O (⊕N((⊕JσK)⊗ (Jσ ∧ σK(τ,j))))) = Jσ ∧ σ ∧ σK(τ,j)

Therefore, J * M + ·C ′Kxℓ ⊢ JΓK, xℓ : Jσ ∧ σ ∧ σK(τ,j) and the result follows.
b. For JUKxi

⊢ xi : JηK; JΘK we consider U to be a binary concatenation of 2 components,
one being an empty unrestricted bag and the other being *M+!. Hence we take
U = 1! ⋄ *M+! with η = σ1 ⋄ σ2, JηiK = &{l1; Jσ1K, l2; Jσ2K} by Def. 28 and finally
by Def. 26 we have JUKxi = xi.case{l1 : J1!Kxi , l2 : J * M +! Kxi}, J1!Kxi = xi.none and
J * M +! Kxi

= JMKxi
, we can conclude JUKxi

= xi.case{l1 : xi.none, l2 : JMKxi
}.

Hence we have:

[FS:bag!]
Θ; - |= 1! : σ1

Θ; · |= M : σ2[FS:bag!]
Θ; · |= *M+! : σ2[FS: ⋄ −bag!]

Θ; · |= 1! ⋄ *M+! : σ1 ⋄ σ2

By the induction hypothesis we have that Θ; · |= M : σ implies JMKxi
|= xi : JσK; JΘK

58 Unrestricted Resources in Encoding Functions as Processes

[TNx]
xi.none ⊢ xi : Jσ1K; JΘK JMKxi

⊢ xi : Jσ2K; JΘK
[TN]

xi.case{l1 : xi.none, l2 : JMKxi} ⊢ xi : &{l1; Jσ1K, l2; Jσ2K}; JΘK

Therefore, xi.case{l1 : xi.none, l2 : JMKxi
} ⊢ xi : &{l1; Jσ1K, l2; Jσ2K}; JΘK and the

result follows.

2. The proof of type preservation for expressions, relies on the analysis of twelve cases:

a. Rule [FS:varℓ]: Then we have the following derivation:

[FS:varℓ] Θ; x : τ |= x : τ

By Def. 28, Jx : τK = x : NJτK, and by Fig. 8, JxKu = x.some; [x↔ u]. The thesis holds
thanks to the following derivation:

[(Tid)]
[x↔ u] ⊢ x : JτK, u : JτK; JΘK

[TNx
d)]

x.some; [x↔ u] ⊢ x : NJτK, u : JτK; JΘK

b. Rule [FS:var!]: Then we have the following derivation provided ηind = τ :

[FS:varℓ]
Θ, x! : η; x : ηind |= x : τ

[FS:var!]
Θ, x! : η; - |= x[ind] : τ

By Def. 28, JΘ, x! : ηK = JΘK, x! : &ηi∈η{li; JηiK}, and by Fig. 8, Jx[ind]Ku = x!?(xi).xi.lind; [xi ↔
u]. The thesis holds thanks to the following derivation:

[(Tid)]
[xi ↔ u] ⊢ u : JτK, xi : JηindK; x! : &ηi∈η{li; JηiK}, JΘK

[T⊕i]
xi.lind; [xi ↔ u] ⊢ u : JτK, xi : ⊕ηi∈η{li; JηiK}; x! : ⊕ηi∈η{li; JηiK}, JΘK

[Tcopy]
x!?(xi).xi.lind; [xi ↔ u] ⊢ u : JτK; x! : ⊕ηi∈η{li; JηiK}, JΘK

c. Rule [FS :weak]: Then we have the following derivation:

Θ; Γ |= M : τ
[FS :weak]

Θ; Γ, x : ω |= M [← x] : τ

By Def. 28, JΓ, x : ωK = JΓK, xℓ : JωK(σ,i1), and by Fig. 8,
JM [← x]Ku = xℓ.some.xℓ(yi).(yi.someu,lfv(M); yi.close; JMKu | xℓ.none).
By IH, we have JMKu ⊢ JΓK, u : JτK; JΘK. The thesis holds thanks to the following
derivation:

JMKu ⊢ JΓK, u : JτK; JΘK
[T⊥]

yi.close; JMKu ⊢ yi:⊥, JΓK, u : JτK; JΘK[T⊕x
w̃
]

yi.someu,lfv(M); yi.close; JMKu ⊢ yi:⊕⊥, JΓK, u : JτK; JΘK
[TNx]

xℓ.none ⊢ xℓ : NA
[T⊗]

xℓ(yi).(yi.someu,lfv(M); yi.close; JMKu | xℓ.none) ⊢ xℓ : (⊕⊥)⊗ (NA), JΓK, u : JτK; JΘK
[TNx

d]
JM [← x]Ku ⊢ xℓ : N((⊕⊥)⊗ (NA)), JΓK, u : JτK; JΘK

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 59

Since A is arbitrary, we can take A = 1 for JωK(σ,0) and A = ((NJσK) O (JωK(σ,i−1)))
for JωK(σ,i) where i > 0, in both cases, the result follows.

d. Rule [FS : abs-sh]:
Then M = λx.(M [x̃← x]), and the derivation is:

Θ, x! : η; Γ, x : σk |= M [x̃← x] : τ x /∈ dom(Γ)
[FS:abs-sh]

Θ; Γ |= λx.(M [x̃← x]) : (σk, η)→ τ

By IH, we have JM [x̃← x]Ku ⊢ u : JτK, JΓK, xℓ : JσkK(σ,i); JΘK, x! : JηK, From Def. 26, it
follows Jλx.M [x̃← x]Ku = u.some; u(x).x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku

We give the final derivation in parts. The first part we name Π1 derived by:

JM [x̃← x]Ku ⊢ u : JτK, JΓK, xℓ : JσkK(σ,i); JΘK, x! : JηK
[T⊥]

x.close; JM [x̃← x]Ku ⊢ x:⊥, u : JτK, JΓK, xℓ : JσkK(σ,i); JΘK, x! : JηK
[T?]

x.close; JM [x̃← x]Ku ⊢ x:⊥, u : JτK, JΓK, xℓ : JσkK(σ,i), x! :?JηK; JΘK
[TO]

x(x!).x.close; JM [x̃← x]Ku ⊢ x : (?JηK) O (⊥), u : JτK, JΓK, xℓ : JσkK(σ,i); JΘK
[TO]

x(xℓ).x(x!).x.close; JM [x̃← x]Ku ⊢ x : JσkK(σ,i) O ((?JηK) O (⊥)), u : JτK, JΓK; JΘK

We take P = x(xℓ).x(x!).x.close; JM [x̃← x]Ku and continue the derivation:

Π1
...

P ⊢ x : JσkK(σ,i) O ((?JηK) O (⊥)), u : JτK, JΓK; JΘK
[TNx

d]
x.some; P ⊢ x : N(JσkK(σ,i) O ((?JηK) O (⊥))), u : JτK, JΓK; JΘK

[TO]
u(x).x.some; P ⊢ u : N(JσkK(σ,i) O ((?JηK) O (⊥))) O JτK, JΓK; JΘK

[TNx
d]

u.some; u(x).x.some; P ⊢ u : N(N(JσkK(σ,i) O ((?JηK) O (⊥))) O JτK), JΓK; JΘK

By Definition 28 we have that J(σk, η)→ τK = N(N(JσkK(σ,i) O ((?JηK) O (⊥))) O JτK).
Hence the case holds by Jλx.M [x̃ℓ ← x]Ku ⊢ u : J(σk, η)→ τK, JΓK; JΘK.

e. Rule [FS : app]: Then M = M B, where B = C ⋆ U and the derivation is:

Θ; Γ |= M : (σj , η)→ τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[FS:app]

Θ; Γ, ∆ |= M B : τ

By IH, we have both
JMKu ⊢ JΓK, u : J(σj , η)→ τK; JΘK
JMKu ⊢ JΓK, u : J(σj , ϵ)→ τK; JΘK, by Lemma 63
JBKu ⊢ J∆K, u : J(σk, ϵ)K(τ2,n); JΘK, for some τ2 and some n.

Therefore, from the fact that M is well-formed and Definitions 26 and 28, we have:
JM(C ⋆ U)Ku =

⊕
Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx));

J(σj , η)→ τK = ⊕((JσkK(τ1,m))⊗ ((!JηK), for some τ1 and some m.
Also, since JBKu ⊢ J∆K, u : J(σk, ϵ)K(τ2,n), we have the following derivation Πi:

60 Unrestricted Resources in Encoding Functions as Processes

JCi ⋆ UKx ⊢ J∆K, x : J(σk, ϵ)K(τ2,n); JΘK
[Tid]

[v ↔ u] ⊢ v : JτK, u : JτK
[T⊗]

v(x).([v ↔ u] | JCi ⋆ UKx) ⊢ J∆K, v : J(σk, ϵ)K(τ2,n) ⊗ JτK, u : JτK; JΘK
[T⊕v

w]
v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx) ⊢ J∆K, v : ⊕(J(σk, ϵ)K(τ2,n) ⊗ JτK), u : JτK; JΘK

Notice that ⊕(J(σk, ϵ)K(τ2,n) ⊗ JτK) = J(σk, ϵ)→ τK. Therefore, by one application of
[Tcut] we obtain the derivations ∇i, for each Ci ∈ PER(C):

JMKv ⊢ JΓK, v : J(σj , ϵ)→ τK; JΘK Πi[Tcut]
(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JBiKx)) ⊢ JΓK, J∆K, u : JτK; JΘK

In order to apply [Tcut], we must have that JσjK(τ1,m) = JσkK(τ2,n), therefore, the
choice of τ1, τ2, n and m, will consider the different possibilities for j and k, as in
Proposition 62. We can then conclude that JMBKu ⊢ JΓK, J∆K, u : JτK; JΘK:

For each Ci ∈ PER(C) ∇i[TN] ⊕
Ci∈PER(C)

(νv)(JMKv | v.someu,fv(B); v(x).([v ↔ u] | JBiKx)) ⊢ JΓK, J∆K, u : JτK; JΘK

and the result follows.
f. Rule [FS : share]: Then M = M [x1, . . . xk ← x] and the derivation is:

Θ; ∆, x1 : σ, · · · , xk : σ |= M : τ x /∈ ∆ k ̸= 0
[FS : share]

Θ; ∆, x : σk |= M [x1, · · · , xk ← x] : τ

To simplify the proof we will consider k = 1 (the case in which k > 1 follows similarly).
By IH, we have JMKu ⊢ J∆, x1 : σK, u : JτK; JΘK. From Definitions 26 and 28, it follows

J∆, x1 : σK = J∆K, xℓ
1 : NJσK.

JM [x1,← x]Ku = xℓ.some.xℓ(y1).(y1.some∅; y1.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\x1);
xℓ(x1).xℓ.some.xℓ(y2).(y2.someu,lfv(M); y2.close; JMKu | xℓ.none))

We shall split the expression into two parts:

N1 = xℓ.some.xℓ(y2).(y2.someu,lfv(M); y2.close; JMKu | xℓ.none)

N2 = xℓ.some.xℓ(y1).(y1.some∅; y1.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\x1); xℓ(x1).N1)

and we obtain the derivation for term N1 as follows where we omit ; JΘK:

JMKu ⊢ J∆, x1 : σK, u : JτK
[T⊥]

y2.close; JMKu ⊢ J∆, x1 : σK, u : JτK, y2:⊥[T⊕x
w̃
]

y2.someu,lfv(M); y2.close; JMKu ⊢ J∆, x1 : σK, u : JτK, y2:⊕⊥
[TNx]

xℓ.none ⊢ xℓ : NA
[T⊗]

xℓ(y2).(y2.someu,lfv(M); y2.close; JMKu | xℓ.none) ⊢ J∆, x1 : σK, u : JτK, xℓ : (⊕⊥)⊗ (NA)
[TNx

d]
xℓ.some.xℓ(y2).(y2.someu,lfv(M); y2.close; JMKu | xℓ.none)︸ ︷︷ ︸

N1

⊢ J∆, x1 : σK, u : JτK, xℓ : JωK(σ,i)

Notice that the last rule applied [TNx
d] assigns x : N((⊕⊥)⊗ (NA)). Again, since A is

arbitrary, we can take A = ⊕((NJσK) O (JωK(σ,i−1))), obtaining x : JωK(σ,i).
In order to obtain a type derivation for N2, consider the derivation Π1:

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 61

N1 ⊢ J∆K, x1 : NJσK, u : JτK, xℓ : JωK(σ,i)[TO]
xℓ(x1).N1 ⊢ J∆K, u : JτK, xℓ : (NJσK) O (JωK(σ,i))[T⊕x

w̃
]

xℓ.someu,(lfv(M)\x1); xℓ(x1).N1 ⊢ J∆K, u : JτK, xℓ:⊕ ((NJσK) O (JωK(σ,i)))[TNx
d]

xℓ.some; xℓ.someu,(lfv(M)\x1); xℓ(x1).N1 ⊢ J∆K, u : JτK, xℓ : N⊕ ((NJσK) O (JωK(σ,i)))
We take P1 = xℓ.some; xℓ.someu,(lfv(M)\x1); xℓ(x1).N1 and Γ1 = J∆K, u : JτK and
continue the derivation of N2

[T·]
0 ⊢ -; JΘK

[T⊥]
y1.close; 0 ⊢ y1 : ⊥; JΘK[T⊕x

w̃
]

y1.some∅; y1.close; 0 ⊢ y1:⊕⊥; JΘK

Π1
...

P1 ⊢ Γ1, xℓ : N⊕ ((NJσK) O (JωK(σ,i))); JΘK
[T⊗]

xℓ(y1).(y1.some∅; y1.close; 0 | P1) ⊢ Γ1, xℓ : (⊕⊥)⊗ (N⊕ ((NJσK) O (JωK(σ,i)))); JΘK
[TNx

d]
xℓ.some.xℓ(y1).(y1.some∅; y1.close; 0 | P1)︸ ︷︷ ︸

N2

⊢ Γ1, xℓ : Jσ ∧ ωK(σ,i); JΘK

Hence the theorem holds for this case.
g. Rule [FS : ex-sub]: Then M = (M [x̃← x])⟨⟨B/x⟩⟩ and

Θ, x! : η; Γ, x : σj |= M [x̃← x] : τ Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[FS:ex-sub]

Θ; Γ, ∆ |= (M [x̃← x])⟨⟨B/x⟩⟩ : τ

By Proposition 62 and IH we have:

JM [x1, · · · , xk ← x]Ku ⊢ JΓK, xℓ : JσjK(τ,n), u : JτK; JΘK, x! : JηK
JM [x1, · · · , xk ← x]Ku ⊢ JΓK, xℓ : JσjK(τ,n), u : JτK; JΘK, x! : JϵK, by Lemma 63

JBKx ⊢ J∆K, x : J(σk, ϵ)K(τ,m); JΘK

From Def. 26, we have

JM [x̃← x] ⟨⟨B/x⟩⟩Ku =
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku | JCi⋆UKx)

Therefore, for each Bi ∈ PER(B), we obtain the following derivation Πi:

JM [x̃← x]Ku ⊢ JΓK, xℓ : JσjK(τ,n), u : JτK; JΘK, x! : JϵK
[T⊥]

x.close; JM [x̃← x]Ku ⊢ x:⊥, JΓK, xℓ : JσjK(τ,n), u : JτK; JΘK, x! : JϵK
[T?]

x.close; JM [x̃← x]Ku ⊢ x:⊥, JΓK, xℓ : JσjK(τ,n), u : JτK, x! :!JϵK; JΘK
[TO]

x(x!).x.close; JM [x̃← x]Ku ⊢ x : (!JϵK) O⊥, JΓK, xℓ : JσjK(τ,n), u : JτK; JΘK
[TO]

x(xℓ).x(x!).x.close; JM [x̃← x]Ku ⊢ x : JσjK(τ,n) O ((!JϵK) O⊥), JΓK, u : JτK; JΘK
[TNx

d]
x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku ⊢ x : J(σj , ϵ)K(τ,n), JΓK, u : JτK; JΘK

We take P1 = x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku and continue the derivation
of Πi

P1 ⊢ x : J(σj , ϵ)K(τ,n), JΓK, u : JτK; JΘK JCi ⋆ UKx ⊢ J∆K, x : J(σk, ϵ)K(τ,m); JΘK
[Tcut]

(νx)(P1 | JCi ⋆ UKx) ⊢ JΓK, J∆K, u : JτK; JΘK

62 Unrestricted Resources in Encoding Functions as Processes

We must have that JσjK(τ,m) = JσkK(τ,n) which by our restrictions allows. Therefore,
from Πi and multiple applications of [TN] it follows that

∀
⊕

Ci∈PER(C) Πi
[TN] ⊕

Ci∈PER(C)(νx)(P1 | JCi ⋆ UKx) ⊢ JΓK, J∆K, u : JτK; JΘK

that is, JM [x1 ← x] ⟨⟨B/x⟩⟩K ⊢ JΓ, ∆K, u : JτK; JΘK and the result follows.
h. Rule [FS:ex-subℓ]: Then M = M⟨|N/x|⟩ and

Θ; Γ, x : σ |= M : τ Θ; ∆ |= N : σ
[FS:ex-subℓ] Θ; Γ, ∆ |= M⟨|N/x|⟩ : τ

By IH we have both
JNKx ⊢ J∆K, x : JσK; JΘK

JMKu ⊢ JΓK, x : NJσK, u : JτK; JΘK

From Definition 26, JM⟨|N/x|⟩Ku = (νx)(JMKu | x.somelfv(N); JNKx) and

JMKu ⊢ JΓK, x : NJσK, u : JτK; JΘK
JNKx ⊢ J∆K, x : JσK; JΘK

[T⊕x]
x.somelfv(N); JNKx ⊢ J∆K, x :: ⊕JσK

[TCut]
(νx)(JMKu | x.somelfv(N); JNKx) ⊢ JΓK, J∆K, u : JτK

Observe that for the application of rule [TCut] we used the fact that ⊕JσK = NJσK.
Therefore, JM⟨|N/x|⟩Ku ⊢ JΓK, J∆K, u : JτK and the result follows.

i. Rule [FS:ex-sub!]: Then M = MTU/xW and

Θ, x! : η; Γ |= M : τ Θ; - |= U : η
[FS:ex-sub!] Θ; Γ |= MTU/xW : τ

By IH we have both
JUKxi ⊢ xi : JηK; JΘK
JMKu ⊢ JΓK, u : JτK; x! : JηK, JΘK

From Definition 26, JMTU/xWKu = (νx!)(JMKu | !x!.(xi).JUKxi
) and

JMKu ⊢ JΓK, u : JτK; x! : JηK, JΘK
[T?]

JMKu ⊢ JΓK, u : JτK, x! :?JηK; JΘK
JUKxi ⊢ xi : JηK; JΘK

[T!]
!x!.(xi).JUKxi

⊢ x! :!JηK; JΘK
[TCut]

(νx!)(JMKu | !x!.(xi).JUKxi
) ⊢ JΓK, u : JτK; JΘK

Observe that for the application of rule [TCut] we used the fact that !JηK =?JηK.
Therefore, JMTU/xWKu ⊢ JΓK, u : JτK; JΘK and the result follows.

j. Rule [FS : fail]: Then M = failx̃ where x̃ = x1, · · · , xn and

dom(Γ) = x̃
[FS:fail]

Θ; Γ |= failx̃ : τ

From Definition 26, Jfailx1,··· ,xnKu = u.none | x1.none | · · · | xk.none and

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 63

[TNu]
u.none ⊢ u : JτK; JΘK

[TNx1]
x1.none ⊢1: NJσ1K; JΘK

[TNxn]
xn.none ⊢ xn : NJσnK; JΘK

...
x1.none | · · · | xk.none ⊢ x1 : NJσ1K, · · · , xn : NJσnK; JΘK

[T |]
u.none | x1.none | · · · | xk.none ⊢ x1 : NJσ1K, · · · , xn : NJσnK, u : JτK; JΘK

Thus, Jfailx1,··· ,xnKu ⊢ x1 : NJσ1K, · · · , xn : NJσnK, u : JτK; JΘK and the result follows.

k. Rule [FS : sum]: This case follows easily by IH.

◀

F.2 Operational Correspondence: Completeness and Soundness

▶ Proposition 65. Let N be a well-formed linearly closed uλ̂ ⊕-term with head(N) = x (x
denoting either linear or unrestricted occurrence of x) such that lfv(N) = ∅ and N does not
fail, that is, there is no Q ∈ uλ̂ ⊕ for which there is a reduction N −→[RS:Fail] Q. Then,

JNKu −→∗
⊕
i∈I

(νỹ)(JxKn | Pi)

for some index set I, names ỹ and n, and processes Pi.

Proof. By induction on the structure of N .

1. N = x or N = x[j]:
These cases are trivial, and follow taking I = ∅ and ỹ = ∅.

2. N = (M B):
Then head(M B) = head(M) = x then

JNKu = JM BKu =
⊕

Bi∈PER(B)

(νv)(JMKv | v.someu,lfv(B); v(x).([v ↔ u] | JBx
i K))

and the proof follows by induction on JMKu.

3. N = (M [ỹ ← y])⟨⟨C ⋆ U/y⟩⟩:
Then head((M [ỹ ← y])⟨⟨C ⋆ U/y⟩⟩) = head((M [ỹ ← y])) = x. As N −→[R] where [R] ̸=
[RS : Fail] we must have that size(ỹ) = size(C). Thus,

64 Unrestricted Resources in Encoding Functions as Processes

JNKu = J(M [ỹ ← y])⟨⟨C ⋆ U/y⟩⟩Ku

=
⊕

Ci∈PER(C)

(νy)(y.some; y(yℓ).y(y!).y.close; JM [ỹ ← y]Ku | JCi ⋆ UKy)

=
⊕

Ci∈PER(C)

(νy)(y.some; y(yℓ).y(y!).y.close; JM [ỹ ← y]Ku |

y.somelfv(C); y(yℓ).(JCiKyℓ | y(y!).(!y!.(yi).JUKyi
| y.close)))

−→∗
⊕

Ci∈PER(C)

(νyℓ, y!)(JM [ỹ ← yℓ]Ku | JCiKyℓ | !y!.(yi).JUKyi
)

=
⊕

Ci∈PER(C)

(νyℓ, y!)(yℓ.some.yℓ(z1).(z1.some∅; z1.close; 0 | yℓ.some;

yℓ.someu,(lfv(M)\y1,··· ,yn); yℓ(y1). · · · yℓ.some.yℓ(zn).(zn.some∅; zn.close; 0

| yℓ.some; yℓ.someu,(lfv(M)\yn); yℓ(yn).yℓ.some; yℓ(zn+1).(zn+1.someu,lfv(M);
zn+1.close; JMKu | yℓ.none)) · · ·) | yℓ.somelfv(C); yℓ(z1).yℓ.somez1,lfv(C); yℓ.some;

yℓ(y1).(y1.somelfv(Ci(1)); JCi(1)Ky1 | · · · yℓ.somelfv(Ci(n)); yℓ(zn).yℓ.somezn,lfv(Ci(n));

yℓ.some; yℓ(yn).(yn.somelfv(Ci(n)); JCi(n)Kyn | yℓ.some∅; yℓ(zn+1).(zn+1.some;
zn+1.close | yℓ.some∅; yℓ.none) | z1.none) | · · · | zn.none) | !y!.(yi).JUKyi

)

−→∗
⊕

Ci∈PER(C)

(νỹ, y!)(JMKu | y1.somelfv(Ci(1)); JCi(1)Ky1 | · · · | yn.somelfv(Ci(n));

JCi(n)Kyn | !y!.(yi).JUKyi)

and the result follows by induction on JMKu.
4. N = M⟨|N ′/y|⟩ and N = MTu/yW:

These cases follow easily by induction on JMKu.
◀

F.2.1 Completeness

Here again, because of the diamond property (Proposition 33), it suffices to consider a
completeness result based on a single reduction step in uλ̂ ⊕:

▶ Notation 8. We use the notation lfv(M).none and x̃.none where lfv(M) or x̃ are equal to
x1, · · · , xk to describe a process of the form x1.none | · · · | xk.none

▶ Theorem 66 (Well Formed Operational Completeness). Let N and M be well-formed, linearly
closed uλ̂ ⊕ expressions. If N −→M then there exists Q such that JNKu −→∗ Q ≡ JMKu.

Proof. By induction on the reduction rule applied to infer N −→M. We have ten cases.

1. Case [RS : Beta]:
Then N = (λx.(M [x̃ ← x]))B −→ (M [x̃ ← x])⟨⟨B/x⟩⟩ = M , where B = C ⋆ U . Notice

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 65

that

JNKu =
⊕

Ci∈PER(C)

(νv)(Jλx.(M [x̃← x])Kv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

=
⊕

Ci∈PER(C)

(νv)(v.some; v(x).x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Kv

| v.someu,lfv(C); v(x).(JCi ⋆ UKx | [v ↔ u]))

−→
⊕

Ci∈PER(C)

(νv)(v(x).x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Kv | v(x).(JCi ⋆ UKx

| [v ↔ u]))

−→
⊕

Ci∈PER(C)

(νv, x)(x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Kv | JCi ⋆ UKx | [v ↔ u])

−→
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Kv | JCi ⋆ UKx) = JMKu

and the result follows.
2. Case [RS : Ex-Sub]:

Then N = M [x1,· · ·, xk ← x]⟨⟨C ⋆ U/x⟩⟩, with C = *M1 + · · · * Mk+, k ≥ 0 and M ̸= failỹ.
The reduction is

N = M [x1,· · ·, xk ← x]⟨⟨C ⋆ U/x⟩⟩ −→
∑

Ci∈PER(C)

M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(k)/xk|⟩TU/xW = M.

We detail the encodings of JNKu and JMKu. To simplify the proof, we will consider k = 1
(the case in which k > 1 is follows analogously, similarly the case of k = 0 is contained
within the proof of k = 1).
On the one hand, we have:

JNKu = JM [x1 ← x]⟨⟨C ⋆ U/x⟩⟩Ku

=
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x1 ← x]Ku | JCi ⋆ UKx)

=
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x1 ← x]Ku | x.somelfv(C); x(xℓ).

(JCiKxℓ | x(x!).(!x!.(xi).JUKxi | x.close))) (:= PN)

Note that

PN −→∗
⊕

Ci∈PER(C)

(νxℓ, x!)(JM [x1 ← x]Ku | JCiKxℓ | !x!.(xi).JUKxi)

=
⊕

Ci∈PER(C)

(νxℓ, x!)(xℓ.some.xℓ(y1).(y1.some∅; y1.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\x1);

xℓ(x1).xℓ.some; xℓ(y2).(y2.someu,lfv(M); y2.close; JMKu | xℓ.none)) | xℓ.somelfv(Bi(1));

xℓ(y1).xℓ.somey1,lfv(Ci(1)); xℓ.some; xℓ(x1).(x1.somelfv(Ci(1)); JCi(1)Kx1 | y1.none | xℓ.

some∅; xℓ(y2).(y2.some; y2.close | xℓ.some∅; xℓ.none)) | !x!.(xi).JUKxi
)

−→∗
⊕

Ci∈PER(C)

(νx1, x!)(JMKu | x1.somelfv(Ci(1)); JCi(1)Kx1 | !x!.(xi).JUKxi) = JMKu

and the result follows.

66 Unrestricted Resources in Encoding Functions as Processes

3. Case [RS:Fetchℓ]:

Then we have N = M⟨|N/x|⟩ with head(M) = x and N −→M{|N/x|} = M. Note that

JNKu = JM⟨|N/x|⟩Ku

= (νx)(JMKu | x.somelfv(N); JNKx)

−→∗ (νx)(
⊕
i∈I

(νỹ)(JxKj | Pi) | x.somelfv(N); JNKx) (∗)

= (νx)(
⊕
i∈I

(νỹ)(JxKj | Pi) | x.some; JNKx)

−→ (νx)(
⊕
i∈I

(νỹ)([x↔ j] | Pi) | JNKx)

−→
⊕
i∈I

(νỹ)(Pi | JNKj) = JMKu

where the reductions denoted by (∗) are inferred via Proposition 65, and the result follows.

4. Case [RS:Fetch!]:

Then, N = MTU/xW with head(M) = x![k], Ui = *N+! and N −→M{|N/x!|}TU/xW = M.
Note that

JNKu = JMTU/xWKu = (νx!)(JMKu | !x!.(xk).JUKxk
)

−→∗ (νx!)(
⊕
i∈I

(νỹ)(Jx![k]Kj | Pi) | !x!.(xk).JUKxk
) (∗)

= (νx!)(
⊕
i∈I

(νỹ)(x!?(xk).xk.li; [xk ↔ j] | Pi) | !x!.(xk).JUKxk
) (∗)

−→ (νx!)(
⊕
i∈I

(νỹ)((νxk)(xk.li; [xk ↔ j] | JUKxk
) | Pi) | !x!.(xk).JUKxk

)

= (νx!)(
⊕
i∈I

(νỹ)((νxk)(xk.li; [xk ↔ j] | xk.case(i.JUiKx)) | Pi) | !x!.(xk).JUKxk
)

−→ (νx!)(
⊕
i∈I

(νỹ)(J * N +! Kj) | Pi) | !x!.(xk).JUKxk
)

= (νx!)(
⊕
i∈I

(νỹ)(JNKj) | Pi) | !x!.(xk).JUKxk
) = JMKu

where the reductions denoted by (∗) are inferred via Proposition 65.

5. Cases [RS : TCont] and [RS : ECont]:

These cases follow by IH.

6. Case [RS:Failℓ]:

Then, N = M [x1,· · ·, xk ← x] ⟨⟨C ⋆ U/x⟩⟩ with k ̸= size(C) and

N −→
∑

Ci∈PER(C) failỹ = M, where ỹ = (lfv(M) \ {x1, · · · , xk}) ∪ lfv(C).

Let size(C) = l and we assume that k > l (proceed similarly for k > l). Hence k = l + m

for some m ≥ 1, and

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 67

JNKu =JM [x1,· · ·, xk ← x] ⟨⟨C ⋆ U/x⟩⟩Ku

=
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku |

x.somelfv(C); x(xℓ).(JCKxℓ | x(x!).(!x!.(xi).JUKxi
| x.close)))

−→∗
⊕

Ci∈PER(C)

(νxℓ, x!)(JM [x̃← x]Ku | JCKxℓ | !x!.(xi).JUKxi
)

=
⊕

Ci∈PER(C)

(νxℓ, x!)(xℓ.some.xℓ(y1).(y1.some∅; y1.close; 0 | xℓ.some;

xℓ.some
u,(lfv(M)\x̃); xℓ(x1). · · ·xℓ.some.xℓ(yk).(yk.some∅; yk.close; 0 | xℓ.some;

xℓ.someu,(lfv(M)\xk); xℓ(xk).xℓ.some; xℓ(yk+1).(yk+1.someu,lfv(M); yk+1.close; JMKu

| xℓ.none)) · · ·) | xℓ.somelfv(C); xℓ(y1).xℓ.somey1,lfv(C); xℓ.some; xℓ(x1).(x1.somelfv(Ci(1));

JCi(1)Kx1 | y1.none | · · ·xℓ.somelfv(Ci(l)); xℓ(yl).xℓ.someyl,lfv(Ci(l)); xℓ.some; xℓ(xl).
(xl.somelfv(Ci(l)); JCi(l)Kxl

| yl.none | xℓ.some∅; xℓ(yl+1).(yl+1.some; yl+1.close

| xℓ.some∅; xℓ.none))) | !x!.(xi).JUKxi
) (:= PN)

−→∗
⊕

Ci∈PER(C)

(νxℓ, x!, y1, x1, · · · yl, xl)(y1.some∅; y1.close; 0 | · · · | yl.some∅; yl.close; 0

x.some.xℓ(yl+1).(yl+1.some∅; yl+1.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\xl+1,··· ,xk);

xℓ(xl+1). · · ·xℓ.some.xℓ(yk).(yk.some∅; yk.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\xk);

xℓ(xk).xℓ.some; xℓ(yk+1).(yk+1.someu,lfv(M); yk+1.close; JMKu | xℓ.none)) · · ·) |
x1.somelfv(Ci(1)); JCi(1)Kx1 | · · · | xl.somelfv(Ci(l)); JCi(l)Kxl

| y1.none | · · · | yl.none

xℓ.some∅; xℓ(yl+1).(yl+1.some; yl+1.close | xℓ.some∅; xℓ.none) | !x!.(xi).JUKxi)

−→
⊕

Ci∈PER(C)

(νx!, x1, · · ·xl)(u.none | x1.none | · · · | xl.none | (lfv(M) \ x1, · · · , xk).

none | x1.somelfv(Ci(1)); JCi(1)Kx1 | · · · | xl.somelfv(Ci(l)); JCi(l)Kxl
| !x!.(xi).JUKxi

)

−→∗
⊕

Ci∈PER(C)

(νx!)(u.none | (lfv(M) \ x1, · · · , xk).none | !x!.(xi).JUKxi
)

≡
⊕

Ci∈PER(C)

u.none | (lfv(M) \ x1, · · · , xk).none = JMKu

and the result follows.

7. Case [RS:Fail!]:

Then, N = MTU/xW with head(M) = x[i], Ui = 1! and N −→ M{|fail∅/x!|}TU/xW,

68 Unrestricted Resources in Encoding Functions as Processes

where ỹ = lfv(M). Notice that

JNKu = JMTU/xWKu = (νx!)(JMKu | !x!.(xi).JUKxi
)

−→∗ (νx!)(
⊕
i∈I

(νỹ)(Jx[i]Kj | Pi) | !x!.(xk).JUKxk
) (∗)

= (νx!)(
⊕
i∈I

(νỹ)(x!?(xk).xk.li; [xk ↔ j] | Pi) | !x!.(xk).JUKxk
) (∗)

−→ (νx!)(
⊕
i∈I

(νỹ)((νxk)(xk.li; [xk ↔ j] | JUKxk
) | Pi) | !x!.(xk).JUKxk

)

= (νx!)(
⊕
i∈I

(νỹ)((νxk)(xk.li; [xk ↔ j] | xk.caseUi∈U{li : JUiKx}) | Pi) | !x!.(xk).JUKxk
)

−→ (νx!)(
⊕
i∈I

(νỹ)(J1!Kj | Pi) | !x!.(xk).JUKxk
)

= (νx!)(
⊕
i∈I

(νỹ)(j.none | Pi) | !x!.(xk).JUKxk
) = JMKu

and the result follows.
8. Case [RS : Cons1]:

Then, N = failx̃ C ⋆ U and N −→
∑

PER(C) failx̃⊎ỹ = M where ỹ = lfv(C). Notice that

JNKu = Jfailx̃ C ⋆ UKu

=
⊕

Ci∈PER(C)

(νv)(Jfailx̃Kv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

=
⊕

Ci∈PER(C)

(νv)(v.none | x̃.none | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

−→
⊕

Ci∈PER(C)

u.none | x̃.none | ỹ.none =
⊕

Ci∈PER(C)

u.none | x̃.none | ỹ.none = JMKu

and the result follows.
9. Cases [RS : Cons2], [RS : Cons3] and [RS : Cons4]:

These cases follow by IH similarly to the previous.
◀

F.2.2 Soundness
▶ Theorem 67 (Well Formed Weak Operational Soundness). Let N be a well-formed, linearly
closed uλ̂ ⊕ expression. If JNKu −→∗ Q then there exist Q′ and N′ such that Q −→∗ Q′,
N −→∗

≡λ
N′ and JN′Ku ≡ Q′.

Proof. By induction on the structure of N and then induction on the number of reductions
of JNK −→∗ Q.

1. Base case: N = x, N = x[j], N = fail∅ and N = λx.(M [x̃← x]). .
No reductions can take place, and the result follows trivially. Q = JNKu −→0 JNKu = Q′

and x −→0 x = N′.
2. N = M(C ⋆ U).

Then, JM(C ⋆ U)Ku =
⊕

Ci∈PER(C)(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)),
and we are able to perform the reductions from JM(C ⋆ U)Ku.
We now proceed by induction on k, with JNKu −→k Q. There are two main cases:

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 69

a. When k = 0 the thesis follows easily:
We have Q = JM(C ⋆U)Ku −→0 JM(C ⋆U)Ku = Q′ and M(C ⋆U) −→0 M(C ⋆U) = N′.

b. The interesting case is when k ≥ 1.
Then, for some process R and n, m such that k = n + m, we have the following:

JNKu =
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

−→m
⊕

Ci∈PER(C)

(νv)(R | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)) −→n Q

Thus, the first m ≥ 0 reduction steps are internal to JMKv; type preservation in
sπ ensures that, if they occur, these reductions do not discard the possibility of
synchronizing with v.some. Then, the first of the n ≥ 0 reduction steps towards Q is a
synchronization between R and v.someu,lfv(C).
We consider two sub-cases, depending on the values of m and n:
i. m = 0 and n ≥ 1:

Then R = JMKv as JMKv −→0 JMKv. Notice that there are two possibilities of
having an unguarded:

A. M = (λx.(M ′[x̃← x]))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW (p, q ≥ 0)

JMKv = J(λx.(M ′[x̃← x]))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqWKv

= (νy1, · · · , yp, z!
1, · · · , z!

q)(Jλx.(M ′[x̃← x])Kv | y1.somelfv(N1); JN1Ky1 | · · ·
| yp.somelfv(Np); JNpKyp

| !z!
1.(z1).JUKz1 | · · · | !z!

q.(zq).JUKzq
)

= (νỹ, z̃)(Jλx.(M ′[x̃← x])Kv | Q′′)
= (νỹ, z̃)(v.some; v(x).x.some; x(xℓ).x(x!).x.close; JM ′[x̃← x]Kv | Q′′)

where ỹ = y1, · · · , yp. z̃ = z!
1, · · · , z!

q and

Q′′ = y1.somelfv(N1); JN1Ky1 | · · · | yp.somelfv(Np); JNpKyp
| !z!

1.(z1).JUKz1 | · · ·
| !z!

q.(zq).JUKzq
.

With this shape for M , we then have the following:

JNKu = J(M B)Ku

=
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

−→
⊕

Ci∈PER(C)

(νv, ỹ, z̃)(v(x).x.some; x(xℓ).x(x!).x.close; JM ′[x̃← x]Kv

| Q′′ | v(x).([v ↔ u] | JCi ⋆ UKx)) = Q1

−→
⊕

Ci∈PER(C)

(νv, ỹ, z̃, x)(x.some; x(xℓ).x(x!).x.close; JM ′[x̃← x]Kv

| Q′′ | [v ↔ u] | JCi ⋆ UKx) = Q2

−→
⊕

Ci∈PER(C)

(νỹ, z̃, x)(x.some; x(xℓ).x(x!).x.close; JM ′[x̃← x]Ku | Q′′

| JCi ⋆ UKx) = Q3

70 Unrestricted Resources in Encoding Functions as Processes

We also have that
N = (λx.(M ′[x̃← x]))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW(C ⋆ U)
≡λ (λx.(M ′[x̃← x])(C ⋆ U))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW

−→M ′[x̃← x]⟨⟨(C ⋆ U)/x⟩⟩⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW = M

Furthermore, we have:

JMKu = JM ′[x̃← x]⟨⟨(C ⋆ U)/x⟩⟩⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqWKu

=
⊕

Ci∈PER(C)

(νỹ, z̃, x)(x.some; x(xℓ).x(x!).x.close; JM ′[x̃← x]Ku | JCi ⋆ UKx | Q′′)

We consider different possibilities for n ≥ 1; in all the cases, the result follows.
When n = 1: We have Q = Q1, JNKu −→1 Q1. We also have that

Q1 −→2 Q3 = Q′ ,
N −→1 M ′[x̃← x])⟨⟨B/x⟩⟩ = N′

and JM ′[x̃← x])⟨⟨B/x⟩⟩Ku = Q3.
When n = 2: the analysis is similar.
When n ≥ 3: We have JNKu −→3 Q3 −→l Q, for l ≥ 0. We also know that
N −→ M, Q3 = JMKu. By the IH, there exist Q′,N′ such that Q −→i Q′,
M −→j

≡λ
N′ and JN′Ku = Q′ . Finally, JNKu −→3 Q3 −→l Q −→i Q′ and

N→M −→j
≡λ

N′.
B. M = failz̃.

Then, JMKv = Jfailz̃Kv = v.none | z̃.none. With this shape for M , we have:

JNKu = J(M (C ⋆ U))Ku

=
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

=
⊕

Ci∈PER(C)

(νv)(v.none | z̃.none | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

−→
⊕

Bi∈PER(B)

u.none | z̃.none | lfv(Ci).none

We also have that N = failx̃ C ⋆ U −→
∑

PER(C) failx̃⊎lfv(C) = M. Furthermore,

JMKu = J
∑

PER(C)

failz̃⊎lfv(C)Ku =
⊕

PER(C)

Jfailz̃⊎lfv(C)Ku

=
⊕

PER(C)

u.none | z̃.none | lfv(C).none.

ii. When m ≥ 1 and n ≥ 0, we distinguish two cases:
A. When n = 0:

Then,
⊕

Ci∈PER(C)(νv)(R | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)) = Q and
JMKu −→m R where m ≥ 1. Then by the IH there exist R′ and M′ such that
R −→i R′, M −→j

≡λ
M′, and JM′Ku = R′. Hence we have that

JNKu =
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

−→m
⊕

Ci∈PER(C)

(νv)(R | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)) = Q

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 71

We also know that

Q −→i
⊕

Ci∈PER(C)

(νv)(R′ | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)) = Q′

and so the uλ̂ ⊕ term can reduce as follows: N = (M (C ⋆U)) −→j
≡λ

M ′ (C ⋆U) =
N′ and JN′Ku = Q′.

B. When n ≥ 1:
Then R has an occurrence of an unguarded v.some or v.none, hence it is of the
form J(λx.(M ′[x̃← x]))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqWKv or Jfailx̃Kv.

This case follows by IH.
This concludes the analysis for the case N = (M (C ⋆ U)).

3. N = M [x̃← x].
The sharing variable x is not free and the result follows by vacuity.

4. N = M [x̃← x]⟨⟨C ⋆ U/x⟩⟩. Then we have

JNKu = JM [x̃← x]⟨⟨C ⋆ U/x⟩⟩Ku

=
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku | JCi ⋆ UKx)

Let us consider three cases.

a. When size(x̃) = size(C). Then let us consider the shape of the bag C.
i. When C = 1.

We have the following

JNKu = (νx)(x.some; x(xℓ).x(x!).x.close; JM [← x]Ku | J1 ⋆ UKx)
= (νx)(x.some; x(xℓ).x(x!).x.close; JM [← x]Ku | x.somelfv(C); x(xℓ).

(J1Kxℓ | x(x!).(!x!.(xi).JUKxi
| x.close)))

−→ (νx)(x(xℓ).x(x!).x.close; JM [← x]Ku | x(xℓ).(J1Kxℓ | x(x!).
(!x!.(xi).JUKxi

| x.close))) = Q1

−→ (νx, xℓ)(x(x!).x.close; JM [← x]Ku | J1Kxℓ | x(x!).
(!x!.(xi).JUKxi

| x.close)) = Q2

−→ (νx, xℓ, x!)(x.close; JM [← x]Ku | J1Kxℓ | !x!.(xi).JUKxi
| x.close) = Q3

−→ (νxℓ, x!)(JM [← x]Ku | J1Kxℓ | !x!.(xi).JUKxi
) = Q4

= (νxℓ, x!)(xℓ.some.xℓ(yi).(yi.someu,lfv(M); yi.close; JMKu | xℓ.none) |
xℓ.some∅; xℓ(yn).(yn.some; yn.close | xℓ.some∅; xℓ.none) | !x!.(xi).JUKxi)

−→ (νxℓ, x!)(xℓ(yi).(yi.someu,lfv(M); yi.close; JMKu | xℓ.none) |
xℓ(yn).(yn.some; yn.close | xℓ.some∅; xℓ.none) | !x!.(xi).JUKxi) = Q5

−→ (νxℓ, x!, yi)(yi.someu,lfv(M); yi.close; JMKu | xℓ.none | yi.some; yi.close

| xℓ.some∅; xℓ.none | !x!.(xi).JUKxi
) = Q6

−→ (νxℓ, x!, yi)(yi.close; JMKu | xℓ.none | yi.close | xℓ.some∅; xℓ.none

| !x!.(xi).JUKxi) = Q7

−→ (νxℓ, x!)(JMKu | xℓ.none | xℓ.some∅; xℓ.none | !x!.(xi).JUKxi) = Q8

−→ (νx!)(JMKu | !x!.(xi).JUKxi
) = JMTU/xWKu = Q9

72 Unrestricted Resources in Encoding Functions as Processes

Notice how Q8 has a choice however the xℓ name can be closed at any time so for
simplicity we only perform communication across this name once all other names
have completed their reductions.
Now we proceed by induction on the number of reductions JNKu −→k Q.

A. When k = 0, the result follows trivially. Just take N = N′ and JNKu = Q = Q′.

B. When k = 1.
We have Q = Q1, JNKu −→1 Q1 We also have that Q1 −→8 Q9 = Q′ , N −→
MTU/xW = M and JMKu = Q9

C. When 2 ≤ k ≤ 8.
Proceeds similarly to the previous case

D. When k ≥ 9.
We have JNKu −→9 Q9 −→l Q, for l ≥ 0. Since Q9 = JMKu we apply the
induction hypothesis we have that there exist Q′,N′ s.t. Q −→i Q′, M −→j

≡λ
N′

and JN′Ku = Q′. Then, JNKu −→5 Q5 −→l Q −→i Q′ and by the contextual
reduction rule it follows that N = (M [← x])⟨⟨1/x⟩⟩ −→j

≡λ
N′ and the case holds.

ii. When C = *N1 + · · · · · *Nl+, for l ≥ 1. Then,

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 73

JNKu = JM [x̃← x]⟨⟨C ⋆ U/x⟩⟩Ku

=
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku | JCi ⋆ UKx)

−→4
⊕

Ci∈PER(C)

(νxℓ, x!)(JM [x̃← x]Ku | JCiKxℓ | !x!.(xi).JUKxi)

=
⊕

Ci∈PER(C)

(νxℓ, x!)(xℓ.some.xℓ(y1).(y1.some∅; y1.close; 0 | xℓ.some;

xℓ.someu,(lfv(M)\x1,··· ,xl); xℓ(x1). · · ·xℓ.some.xℓ(yl).(yl.some∅; yl.close; 0

| xℓ.some; xℓ.someu,(lfv(M)\xl); xℓ(xl).xℓ.some; xℓ(yl+1).(yl+1.someu,lfv(M);
yl+1.close; JMKu | xℓ.none)) · · ·) | xℓ.somelfv(C); xℓ(y1).xℓ.somey1,lfv(C);

xℓ.some; xℓ(x1).(x1.somelfv(Ci(1)); JCi(1)Kx1 | y1.none | · · ·xℓ.somelfv(Ci(l));

xℓ(yl).xℓ.someyl,lfv(Ci(l)); xℓ.some; xℓ(xl).(xl.somelfv(Ci(l)); JCi(l)Kxl

| yl.none | xℓ.some∅; xℓ(yl+1).(yl+1.some; yl+1.close | xℓ.some∅; xℓ.none)))
| !x!.(xi).JUKxi

)

−→5l
⊕

Ci∈PER(C)

(νxℓ, x!, x1, y1, · · · , xl, y1)(y1.some∅; y1.close; 0 | · · · yl.some∅;

yl.close; 0 | xℓ.some; xℓ(yl+1).(yl+1.someu,lfv(M); yl+1.close; JMKu | xℓ.none) |
x1.somelfv(Ci(1)); JCi(1)Kx1 | y1.none | · · ·xl.somelfv(Ci(l)); JCi(l)Kxl

| yl.none |
xℓ.some∅; xℓ(yl+1).(yl+1.some; yl+1.close | xℓ.some∅; xℓ.none) | !x!.(xi).JUKxi

)

−→5
⊕

Ci∈PER(C)

(νx!, x1, y1, · · · , xl, y1)(y1.some∅; y1.close; 0 | · · · yl.some∅; yl.close; 0

| JMKu | x1.somelfv(Ci(1)); JCi(1)Kx1 | y1.none | · · ·xl.somelfv(Ci(l)); JCi(l)Kxl

| yl.none | !x!.(xi).JUKxi)

−→l
⊕

Ci∈PER(C)

(νx!, x1 · · · , xl)(JMKu | x1.somelfv(Ci(1)); JCi(1)Kx1 | · · ·

| xl.somelfv(Ci(l)); JCi(l)Kxl
| !x!.(xi).JUKxi

)

= J
∑

Ci∈PER(C)

M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(l)/xl|⟩TU/xWKu = Q6l+9

The proof follows by induction on the number of reductions JNKu −→k Q.
A. When k = 0, the result follows trivially. Just take N = N′ and JNKu = Q = Q′.
B. When 1 ≤ k ≤ 6l + 9.

Let Qk such that JNKu −→k Qk. We also have that Qk −→6l+9−k Q6l+9 = Q′ ,
N −→1 ∑

Ci∈PER(C) M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(l)/xl|⟩TU/xW = N′ and
J

∑
Ci∈PER(C) M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(l)/xl|⟩TU/xWKu = Q6l+9.

C. When k > 6l + 9.
Then, JNKu −→6l+9 Q6l+9 −→n Q for n ≥ 1. Also,
N −→1

∑
Ci∈PER(C)

M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(l)/xl|⟩TU/xW and

Q6l+9 = J
∑

Ci∈PER(C)

M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(l)/xl|⟩TU/xWKu.

By the induction hypothesis, there exist Q′ and N′ such that Q −→i Q′,

74 Unrestricted Resources in Encoding Functions as Processes

∑
Ci∈PER(C) M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(l)/xl|⟩TU/xW −→j

≡λ
N′ and JN′Ku = Q′.

Finally, JNKu −→6l+9 Q6l+9 −→n Q −→i Q′ and

N→
∑

Ci∈PER(C)

M⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(l)/xl|⟩TU/xW −→j
≡λ

N′.

b. When size(x̃) > size(C).
Then we have N = M [x1, · · · , xk ← x] ⟨⟨C ⋆ U/x⟩⟩ with C = *N1 + · · · * Nl + k > l.
N −→

∑
Ci∈PER(C) failz̃ = M and z̃ = (lfv(M) \ {x1, · · · , xk}) ∪ lfv(C). On the one

hand, we have: Hence k = l + m for some m ≥ 1

JNKu = JM [x1, · · · , xk ← x] ⟨⟨C ⋆ U/x⟩⟩Ku

=
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x1, · · · , xk ← x]Ku | JCi ⋆ UKx)

−→4
⊕

Ci∈PER(C)

(νxℓ, x!)(JM [x1, · · · , xk ← x]Ku | JCiKxℓ | !x!.(xi).JUKxi
)

=
⊕

Ci∈PER(C)

(νxℓ, x!)(xℓ.some.xℓ(y1).(y1.some∅; y1.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\x1,··· ,xk);

xℓ(x1). · · ·xℓ.some.xℓ(yk).(yk.some∅; yk.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\xk); xℓ(xk).

xℓ.some; xℓ(yk+1).(yk+1.someu,lfv(M); yk+1.close; JMKu | xℓ.none)) · · ·) |

xℓ.somelfv(C); xℓ(y1).xℓ.somey1,lfv(C); xℓ.some; xℓ(x1).(x1.somelfv(Ci(1)); JCi(1)Kx1 | y1.none | · · ·

xℓ.somelfv(Ci(l)); xℓ(yl).xℓ.someyl,lfv(Ci(l)); xℓ.some; xℓ(xl).(xl.somelfv(Ci(l)); JCi(l)Kxl
| yl.none |

xℓ.some∅; xℓ(yl+1).(yl+1.some; yl+1.close | xℓ.some∅; xℓ.none))) | !x!.(xi).JUKxi
)

−→5l
⊕

Ci∈PER(C)

(νxℓ, x!, y1, x1, · · · yl, xl)(y1.some∅; y1.close; 0 | · · · | yl.some∅; yl.close; 0

xℓ.some.xℓ(yl+1).(yl+1.some∅; yl+1.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\xl+1,··· ,xk); xℓ(xl+1). · · ·

xℓ.some.xℓ(yk).(yk.some∅; yk.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\xk); xℓ(xk).

xℓ.some; xℓ(yk+1).(yk+1.someu,lfv(M); yk+1.close; JMKu | xℓ.none)) · · ·) |
x1.somelfv(Ci(1)); JCi(1)Kx1 | · · · | xl.somelfv(Ci(l)); JCi(l)Kxl

| y1.none | · · · | yl.none

xℓ.some∅; xℓ(yl+1).(yl+1.some; yl+1.close | xℓ.some∅; xℓ.none) | !x!.(xi).JUKxi) (:= PN)

PN −→l+5
⊕

Ci∈PER(C)

(νxℓ, x!, x1, · · · , xl)(xℓ.someu,(lfv(M)\xl+1,··· ,xk); xℓ(xl+1). · · ·

xℓ.some.xℓ(yk).(yk.some∅; yk.close; 0 | xℓ.some; xℓ.someu,(lfv(M)\xk); xℓ(xk).

xℓ.some; xℓ(yk+1).(yk+1.someu,lfv(M); yk+1.close; JMKu | xℓ.none)) |
x1.somelfv(Ci(1)); JCi(1)Kx1 | · · · | xl.somelfv(Ci(l)); JCi(l)Kxl

| xℓ.none | !x!.(xi).JUKxi)

−→
⊕

Ci∈PER(C)

(νx!, x1, · · · , xl)(u.none | x1.none | · · · | xl.none | (lfv(M) \ {x1, · · · , xk}).none |

x1.somelfv(Ci(1)); JCi(1)Kx1 | · · · | xl.somelfv(Ci(l)); JCi(l)Kxl
)

−→l
⊕

Ci∈PER(C)

u.none | (lfv(M) \ {x1, · · · , xk}).none | lfv(C).none

= J
∑

Ci∈PER(C)

failz̃Ku = Q7l+10

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 75

The rest of the proof is by induction on the number of reductions JNKu −→j Q.
i. When j = 0, the result follows trivially. Just take N = N′ and JNKu = Q = Q′.
ii. When 1 ≤ j ≤ 7l + 10.

Let Qj be such that JNKu −→j Qj . By the steps above one has
Qj −→7l+10−j Q7l+6 = Q′,

N −→1
∑

Ci∈PER(C)

failz̃ = N′; andJ
∑

Ci∈PER(C)

failz̃Ku = Q7l+10.

iii. When j > 7l + 10.
In this case, we have

JNKu −→7l+10 Q7l+10 −→n Q,

for n ≥ 1. We also know that N −→1 ∑
Ci∈PER(C) failz̃. However no further

reductions can be performed.
c. When size(x̃) < size(C), the proof proceeds similarly to the previous case.

5. N = M⟨|N ′/x|⟩.
In this case, JM⟨|N ′/x|⟩Ku = (νx)(JMKu | x.somelfv(N ′); JN ′Kx). Therefore,

JNKu = (νx)(JMKu | x.somelfv(N ′); JN ′Kx) −→m (νx)(R | x.somelfv(N ′); JN ′Kx) −→n Q,

for some process R. Where−→n is a reduction that initially synchronizes with x.somelfv(N ′)
when n ≥ 1, n + m = k ≥ 1. Type preservation in sπ ensures reducing JMKv −→m does
not consume possible synchronizations with x.some, if they occur. Let us consider the
the possible sizes of both m and n.

a. For m = 0 and n ≥ 1.
We have that R = JMKu as JMKu −→0 JMKu.
Notice that there are two possibilities of having an unguarded x.some or x.none without
internal reductions:
i. M = failx,ỹ.

JNKu = (νx)(JMKu | x.somelfv(N ′); JN ′Kx)

= (νx)(Jfailx,ỹKu | x.somelfv(N ′); JN ′Kx)
= (νx)(u.none | x.none | ỹ.none | x.somelfv(N ′); JN ′Kx)
−→ u.none | ỹ.none | lfv(N ′).none

Notice that no further reductions can be performed. Thus,

JNKu −→ u.none | ỹ.none | fv(N ′).none = Q′.

We also have that N −→ failỹ∪lfv(N ′) = N′ and Jfailỹ∪lfv(N ′)Ku = Q′.
ii. head(M) = x.

By the diamond property we will be reducing each non-deterministic choice of a
process simultaneously. Then we have the following

JNKu = (νx)(
⊕
i∈I

(νỹ)(JxKj | Pi) | x.somelfv(N ′); JN ′Kx)

= (νx)(
⊕
i∈I

(νỹ)(x.some; [x↔ j] | Pi) | x.somelfv(N ′); JN ′Kx)

−→ (νx)(
⊕
i∈I

(νỹ)([x↔ j] | Pi) | JN ′Kx) = Q1

−→
⊕
i∈I

(νỹ)(JN ′Kj | Pi) = Q2

76 Unrestricted Resources in Encoding Functions as Processes

In addition, N = M⟨|N ′/x|⟩ −→M{|N ′/x|} = M. Finally,

JMKu = JM{|N ′/x|}Ku =
⊕
i∈I

(νỹ)(JN ′Kj | Pi) = Q2.

A. When n = 1:
Then, Q = Q1 and JNKu −→1 Q1. Also,
Q1 −→1 Q2 = Q′, N −→1 M{|N ′/x|} = N′ and JM{|N ′/x|}Ku = Q2.

B. When n ≥ 2:
Then JNKu −→2 Q2 −→l Q, for l ≥ 0. Also, N → M, Q2 = JMKu. By the
induction hypothesis, there exist Q′ and N′ such that Q −→i Q′, M −→j

≡λ
N′

and JN′Ku = Q′. Finally, JNKu −→2 Q2 −→l Q −→i Q′ and N→M −→j
≡λ

N′.

b. For m ≥ 1 and n ≥ 0.

i. When n = 0.
Then (νx)(R | x.somelfv(N ′); JN ′Kx) = Q and JMKu −→m R where m ≥ 1. By the
IH there exist R′ and M′ such that R −→i R′, M −→j

≡λ
M′ and JM′Ku = R′. Thus,

JNKu = (νx)(JMKu | x.somelfv(N ′); JN ′Kx) −→m (νx)(R | x.somelfv(N ′); JN ′Kx) = Q

Also, Q −→i (νx)(R′ | x.somelfv(N ′); JN ′Kx) = Q′, and the term can reduce as follows:
N = M⟨|N ′/x|⟩ −→j

≡λ

∑
M ′

i
∈M′ M ′

i⟨|N ′/x|⟩ = N′ and JN′Ku = Q′

ii. When n ≥ 1. Then R has an occurrence of an unguarded x.some or x.none, this
case follows by IH.

6. N = MTU/xW.
In this case, JMTU/xWKu = (νx!)(JMKu | !x!.(xi).JUKxi

). Then,

JNKu = (νx!)(JMKu | !x!.(xi).JUKxi
) −→m (νx!)(R | !x!.(xi).JUKxi

) −→n Q.

for some process R. Where −→n is a reduction initially synchronises with !x!.(xi) when
n ≥ 1, n + m = k ≥ 1. Type preservation in sπ ensures reducing JMKv −→m doesn’t
consume possible synchronisations with !x!.(xi) if they occur. Let us consider the the
possible sizes of both m and n.

a. For m = 0 and n ≥ 1.
In this case, R = JMKu as JMKu −→0 JMKu.
Notice that the only possibility of having an unguarded x!?(xi) without internal
reductions is when head(M) = x[ind]. By the diamond property we will be reducing
each non-deterministic choice of a process simultaneously. Then we have the following:

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 77

JNKu = (νx!)(
⊕
i∈I

(νỹ)(Jx[ind]Kj | Pi) | !x!.(xi).JUKxi
)

= (νx!)(
⊕
i∈I

(νỹ)(x!?(xi).xi.lind; [xi ↔ j] | Pi) | !x!.(xi).JUKxi)

−→ (νx!)(
⊕
i∈I

(νỹ)((νxi)(xi.lind; [xi ↔ j] | JUKxi
) | Pi) | !x!.(xi).JUKxi

) = Q1

= (νx!)(
⊕
i∈I

(νỹ)((νxi)(xi.lind; [xi ↔ j] | xi.case(ind.JUindKxi
)) | Pi)

| !x!.(xi).JUKxi)

−→ (νx!)(
⊕
i∈I

(νỹ)((νxi)([xi ↔ j] | JUindKxi
) | Pi) | !x!.(xi).JUKxi

) = Q2

−→ (νx!)(
⊕
i∈I

(νỹ)(JUindKj | Pi) | !x!.(xi).JUKxi
) = Q3

We consider the two cases of the form of Uind and show that the choice of Uind is
inconsequential

When Ui = *N+!:
In this case, N = MTU/xW −→M{|N/x!|}TU/xW = M. and

JMKu = JM{|N/x!|}TU/xWKu = (νx!)(
⊕
i∈I

(νỹ)(J * N + Kj | Pi) | !x!.(xi).JUKxi) = Q3

When Ui = 1!:
In this case, N = MTU/xW −→M{|fail∅/x!|}TU/xW = M.

Notice that J1!Kj = j.none and that Jfail∅Kj = j.none. In addition,

JMKu = JM{|fail∅/x!|}TU/xWKu

= (νx!)(
⊕
i∈I

(νỹ)(Jfail∅Kj | Pi) | !x!.(xi).JUKxi
)

= (νx!)(
⊕
i∈I

(νỹ)(J1!Kj | Pi) | !x!.(xi).JUKxi
) = Q3

Both choices give an M that are equivalent to Q3.
i. When n ≤ 2.

In this case, Q = Qn and JNKu −→n Qn.
Also, Qn −→3−n Q3 = Q′, N −→1 M = N′ and JMKu = Q2.

ii. When n ≥ 3.
We have JNKu −→3 Q3 −→l Q for l ≥ 0. We also know that N → M, Q3 = JMKu.
By the IH, there exist Q and N′ such that Q −→i Q′, M −→j

≡λ
N′ and JN′Ku = Q′.

Finally, JNKu −→2 Q3 −→l Q −→i Q′ and N→M −→j
≡λ

N′.
b. For m ≥ 1 and n ≥ 0.

i. When n = 0.
Then (νx!)(R | !x!.(xi).JUKxi) = Q and JMKu −→m R where m ≥ 1. By the IH
there exist R′ and M′ such that R −→i R′, M −→j

≡λ
M′ and JM′Ku = R′. Hence,

JNKu = (νx!)(JMKu | !x!.(xi).JUKxi) −→m (νx!)(R | !x!.(xi).JUKxi) = Q.

In addition, Q −→i (νx!)(R′ | !x!.(xi).JUKxi) = Q, and the term can reduce as
follows: N = MTU/xW −→j

≡λ

∑
M ′

i
∈M′ M ′

iTU/xW = N′ and JN′Ku = Q′.

78 Unrestricted Resources in Encoding Functions as Processes

ii. When n ≥ 1.
Then R has an occurrence of an unguarded x!?(xi), and the case follows by IH.

◀

F.3 Success Sensitiveness of J · Ku

We say that a process occurs guarded when it occurs behind a prefix (input, output, closing of
channels, servers, server request, choice an selection and non-deterministic session behaviour).
Formally,

▶ Definition 68. A process P ∈ sπ is guarded if α.P , α; P or x.casei∈I{li : P}, where α =
x(y), x(y), x.close, x.close, x.some, x.some(w1,··· ,wn), x.li, !x(y), x?(y). We say it occurs
unguarded if it is not guarded for any prefix.

▶ Proposition 69 (Preservation of Success). For all M ∈ uλ̂ ⊕, the following hold:
1. head(M) = ✓ =⇒ JMK = P | ✓⊕Q

2. JMKu = P | ✓⊕Q =⇒ head(M) = ✓

Proof. Proof of both cases by induction on the structure of M .

1. We only need to consider terms of the following form:

a. M = ✓:
This case is immediate.

b. M = N (C ⋆ U):
Then, head(N (C ⋆ U)) = head(N). If head(N) = ✓, then

JM(C ⋆ U)Ku =
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)).

By the IH, ✓ is unguarded in JNKu.
c. M = M ′⟨|N/x|⟩

Then we have that head(M ′⟨|N/x|⟩) = head(M ′) = ✓. Then JM ′⟨|N/x|⟩Ku = (νx)(JM ′Ku | x.somelfv(N); JNKx)
and by the IH ✓ is unguarded in JM ′Ku.

d. M = M ′TU/xW
Then we have that head(M ′TU/xW) = head(M ′) = ✓. Then JM ′TU/xWKu = (νx!)(JM ′Ku | !x!.(xi).JUKxi

)
and by the IH ✓ is unguarded in JM ′Ku.

2. We only need to consider terms of the following form:

a. Case M = ✓:
Then, J✓Ku = ✓ which is an unguarded occurrence of ✓ and that head(✓) = ✓.

b. Case M = N(C ⋆ U):
Then, JN(C ⋆U)Ku =

⊕
Ci∈PER(C)(νv)(JNKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆UKx)).

The only occurrence of an unguarded ✓ can occur is within JNKv. By the IH,
head(N) = ✓ and finally head(N B) = head(N).

c. Case M = M ′⟨|N/x|⟩:
Then, JM ′⟨|N/x|⟩Ku = (νx)(JM ′Ku | x.somelfv(N); JNKx), an unguarded occurrence of ✓
can only occur within JM ′Ku. By the IH, head(M ′) = ✓ and hence head(M ′⟨|N/x|⟩) =
head(M ′).

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 79

d. Case M = M ′TU/xW: This case is analogous to the previous.

◀

▶ Theorem 70 (Success Sensitivity). The encoding J− Ku : uλ̂ ⊕ → sπ is success sensitive on
well formed linearly closed expression if for any expression we have M ⇓✓ iff JMKu ⇓✓.

Proof. We proceed with the proof in two parts.

1. Suppose that M ⇓✓. We will prove that JMK ⇓✓.
By Def. 59, there exists M′ = M1, · · · , Mk such that M −→∗ M′ and head(M ′

j) = ✓, for
some j ∈ {1, . . . , k} and term M ′

j such that Mj ≡λ M ′
j . By completeness, there exists Q

such that JMKu −→∗ Q = JM′Ku.
We wish to show that there exists Q′such that Q −→∗ Q′ and Q′ has an unguarded
occurrence of ✓.
From Q = JM′Ku and due to compositionality and the homomorphic preservation of
non-determinism we have that Q = JM1Ku ⊕ · · · ⊕ JMkKu.
By Proposition 69 (1) we have that head(Mj) = ✓ =⇒ JMjKu = P | ✓⊕Q′. Hence Q

reduces to a process that has an unguarded occurence of ✓.
2. Suppose that JMKu ⇓✓. We will prove that M ⇓✓.

By operational soundness (Lemma 67) we have that if JNKu −→∗ Q then there exist Q′

and N′ such that Q −→∗ Q′, N −→∗
≡λ

N′ and JN′Ku = Q′.
Since JMKu −→∗ P1 ⊕ . . .⊕ Pk, and P ′

j = P ′′
j | ✓, for some j and P ′

j , such that Pj ≡ P ′
j .

Notice that if JMKu is itself a term with unguarded ✓, say JMKu = P | ✓, then M is itself
headed with ✓, from Proposition 69 (2).
In the case JMKu = P1⊕ . . .⊕Pk, k ≥ 2, and ✓ occurs unguarded in an Pj , The encoding
acts homomorphically over sums and the reasoning is similar. We have that Pj = P ′

j | ✓
we apply Proposition 69 (2).

◀

	1 Introduction
	2 Unrestricted Resources, Non-Determinism, and Failure
	3 Intersection Types
	4 A Translation into Processes
	4.1 Session-Typed Calculus
	4.2 An Auxiliary Calculus With Sharing
	4.3 First Step
	4.4 Second Step

	5 Concluding Remarks
	A Appendix to Section 2
	A.1 Diamond Property for

	B Appendix to Section 3
	B.1 Examples

	C Appendix to Subsection 4.1
	D Appendix to Subsection 4.2
	D.1 Well-formedness rules for

	E Appendix to Subsection 4.3
	E.1 Encodability Criteria
	E.2 Correctness of
	E.3 Success Sensitiveness of

	F Appendix to Subsection 4.4
	F.1 Type Preservation
	F.2 Operational Correspondence: Completeness and Soundness
	F.2.1 Completeness
	F.2.2 Soundness

	F.3 Success Sensitiveness of u

