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Abstract

Action calculi have been introduced by Milner as a framework for representing models
of interactive behaviour. Two natural extensions of action calculi have been proposed: the
higher-order action calculi, which add higher-order features to the basic setting, and the
reflexive action calculi, which allow circular bindings of processes and gives recursion in the
presense of higher-order features.

In this paper, we present simple type theories for action calculi, higher-order action cal-
culi and reflexive action calculi. We also give the categorical models of the extensions, by
enriching Power’s models of action calculi. As applications, we give a semantic proof of
the conservativity of higher-order action calculi over action calculi, and a precise connection
with Moggi’s computational lambda calculus and notions of computation. We also relate
the models of higher-order reflexive action calculi to models of recursive computation, by
following the observation that the trace operator of Joyal, Street and Verity can be used to
model recursion.
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1 Introduction

Milner introduced action calculi as a framework for representing models of interactive be-
haviour [Mil96]. He also introduced two conservative extensions: higher-order action calculi
[Mil94a], which add higher-order features to the basic setting, and reflexive action calculi
[Mil94b], which allow circular construction of actions and give recursion in the presence of
the higher-order features. We present simple type theories for action calculi and the exten-
sions. We also give the categorical models of the extensions, by enriching Power’s models of
action calculi [Pow96]. It remains an on-going research area to fully understand the dynamics
of action calculi and obtain, for example, a general theory of bisimulation.

Higher-Order Action Calculi and Notions of Computation

We solve two open problems for higher-order action calculi: the connection between higher-
order action calculi and typed λ-calculi, and the identification of the categorical models for the
higher-order case. Milner first postulated the relationship between higher-order action calculi
and typed λ-calculi in [Mil94a]. He showed how to obtain a cartesian closed category from a
higher-order action calculi with an extra axiom corresponding to η-equality. However, he also
observed that this extra axiom collapses the higher-order structure, in that the conservativity
result over action calculi is lost.

One important fact about higher-order action calculi is that we can only substitute names
and codes of the form paq, where a is an action (or agent or process). This restriction
is necessary, because arbitrary processes can cause side-effects and hence should not be
duplicated nor discarded freely. We give a type-theoretic presentation of higher-order action
calculi, where variables and λ-abstractions are the only terms that are substituted and the
dynamics corresponds to term rewriting modulo a provable equality.

We also identify a class of categorical models of higher-order action calculi, by extending
Power’s models of action calculi [Pow96]. We use a cartesian category for interpreting the
names and the codes, a symmetric monoidal category with a local preorder for interpreting
arbitrary processes and their dynamics, and a symmetric monoidal adjunction for describing
the interplay between the two categories. We give a sound interpretation of our higher-
order type theory in these models. To show completeness, we require an extra axiom which
corresponds to a η axiom for names.

There are two applications of these results. First, we give a simple semantic proof of
the conservativity of (static) higher-order action calculi over action calculi using standard
results from category theory. Second, we observe that our type theory is very similar to
Moggi’s computational λ-calculus [Mog88], and make this intuition precise by relating the
class of the models of higher-order theories and Moggi’s semantic framework called notions
of computation [Mog91]. Our results also clarify the differences between the two approaches.
Moggi describes computational behaviour using monads in a category, whereas the dynamics
of action calculi are interpreted by preorders.

Reflexive Action Calculi, Letrec, and Trace

The type theory for the reflexive action calculi uses the calculi with recursive letrec binding
widely used in many programming languages. In particular our presentation is strongly
inspired from recent work on cyclic graph rewriting systems by Ariola et al [AA95].

Our models for the reflexive action calculi are based on the traced monoidal categories
of Joyal, Street and Verity [JSV96], which provide a general foundation for modeling these
sort of cyclic structures. Mifsud and Hasegawa have shown that the axioms for the reflexion
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operator are equivalent to the axioms for the trace operator [Mif96]. Following their work
we formulate our models of reflexive action calculi using traced monoidal categories.

As a most interesting use of reflexion, we study the recursive computation in the higher-
order reflexive action calculi. Mifsud observes that recursive computation can be described
using the reflexive higher-order action calculi [Mif96]. Hasegawa extends this work to provide
a new class of semantic models for recursion in terms of traced monoidal categories [Has97a].
Here, we review Mifsud’s construction using our type theory, and show how it leads to the
general models for recursion.

Overview

This paper is organized as follows. In Section 2, we review action calculi, higher-order action
calculi and reflexive action calculi. Section 3 describes the type theories, and Section 4 the
corresponding models. We give three applications of these results. Section 5 gives a semantic
proof of conservativity of higher-order action calculi over action calculi, and in Section 6 we
relate our type theories with Moggi’s work by comparing the semantic models. Section 7 is
devoted for analyzing recursive computation in the higher-order reflexive setting which leads
to Hasegawa’s work on recursion and traced monoidal categories. We conclude in Section 8
by showing how our results fit the broader picture with discussions towards further research.

2 Preliminaries

In this section we review action calculi, higher-order action calculi and reflexive action calculi.
Most of the ideas can be found in Milner’s original work [Mil96, Mil94a, Mil94b], although
there are a few novel features including an additional axiom for higher-order action calculi
and the omission of a redundant axiom for reflexive action calculi.

2.1 Action Calculi

An action calculus is defined by a set of terms, an equational theory on the terms and a
preorder on the equivalence classes of terms, called the reaction relation or the dynamics. It
is generated from a signature K = (P,K), which consists of a set P of (basic) primes denoted
by p, q, . . . and a set K of control operators. Each control operator K of K is equipped with
an arity rule ((m1, n1), . . . (mr, nr)) → (m,n), where the m’s and n’s are finite sequences of
primes called (tensor) arities; we write ǫ for the empty sequence, (infix) ⊗ for concatenation
and write M for the set of arities. We overload primes with arities of length one, and call them
prime arities. We assume a fixed denumerable set X of names, each of which is equipped
with a prime. We let x, y, . . . range over names, and sometimes write xp to indicate that x
has the prime arity p.

Definition 2.1 Terms a, b, c . . . are constructed from the basic operators: identity idm, com-
position ·, tensor ⊗, permutation pm,n, abstraction (xp), datum 〈xp〉 and the control operators
K. A term a is assigned a pair of arities (m,n), which we write a : m → n, using the following
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rules:

idm : m → m
a : k → l b : l → m

a · b : k → m
a : k → m b : l → n
a⊗ b : k ⊗ l → m⊗ n

pm,n : m⊗ n → n⊗m
a : m → n

(xp)a : p⊗m → n 〈xp〉 : ǫ → p

a1 : m1 → n1 . . . ar : mr → nr

K(a1, . . . , ar) : m → n

where, in the derivation of K(a1, . . . , ar), the arity rule of the control operator K ∈ K is
((m1, n1), . . . , (mr, nr)) → (m,n). ✷

Notation. We omit the arity subscripts on the basic operators when apparent. The notions
of free and bound name are standard: (x) binds x and 〈x〉 represents a free occurrence
of x. We write a{b/〈x〉} to denote the usual capture-avoiding substitution. The set of
names free in a, b, . . . is denoted by fn(a, b, . . .). Given a (possibly empty) sequence of names
~x = xp1

1 , . . . , xpr
r (we use vectors like ~x, ~y for sequences of names), we write |~x| for p1⊗. . .⊗pr.

All terms and expressions used are well formed, and all equations are between terms of the
same arity. We let (~x)a denote (x1) · · · (xr)a, where the xi’s are distinct, and let 〈~x〉 denote
〈x1〉⊗· · ·⊗〈xr〉, where ( )a is a and 〈 〉 is idǫ. We write ∆m for the term (~x)〈~x~x〉 : m → m⊗m,
and ωm for (~x)idǫ : m → ǫ.

Definition 2.2 The equational theory AC is the congruence relation on terms generated by
the axioms of a strict monoidal category with a symmetry p:

a · id = a = id · a a · (b · c) = (a · b) · c
a⊗ idǫ = a = idǫ ⊗ a a⊗ (b⊗ c) = (a⊗ b)⊗ c
id⊗ id = id (a · b)⊗ (a′ · b′) = (a⊗ a′) · (b⊗ b′)
pm,n · (b ⊗ a) = (a⊗ b) · pm′,n′ pl⊗m,n = (idl ⊗ pm,n) · (pl,n ⊗ idm)
pm,n · pn,m = idm⊗n

together with the following two axioms (σ) and (δ):

(σ) (〈y〉 ⊗ idm) · (x)a = a{〈y〉/〈x〉}
(δ) (x)((〈x〉 ⊗ idm) · a) = a where x 6∈ fn(a)

✷

It is an immediate consequence of these axioms that idm = (~x)〈~x〉 and pm,n = (~x~y)〈~y~x〉,
where |~x| = m and |~y| = n. Our axiomatization is slightly different from the original
presentation [Mil96] in the choice of primitive term constructors and axioms, but it is routine
to see that these two versions are equivalent.

Definition 2.3 The actions are given by the equivalence classes obtained by quotienting the
terms (Definition 2.1) by the equational theory AC (Definition 2.2). We overload notation
and use a, b, c, . . . to denote actions as well as terms. An action calculus AC(K ) consists
of the actions and a preorder ց on actions which preserves the arities and is closed under
composition, tensor and abstraction, such that id ց a implies a = id. The preorder ց is
also called the dynamics or the reaction relation of the action calculus. ✷

A static action calculus is an action calculus with the trivial dynamics (i.e. the identity
relation on actions).
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Example 2.4 A simple example of non-deterministic behaviour can be described in an action
calculus by a control operator plus : ((m,n), (m,n)) → (m,n) with the dynamics generated
by the rules:

plus(a, b) ց a and plus(a, b) ց b.

This behaviour is analogous to a choice operator + in process calculi with reduction rules
P +Q → P and P +Q → Q. We refer to [Mil96] for more interesting examples, including the
π-calculus and Petri nets, which explore the use of action calculi as a framework for interactive
behaviour. The simple example given here is enough to illustrate the ideas presented in this
paper. ✷

2.2 Higher-Order Action Calculi

Higher-order action calculi [Mil94a] extend action calculi so that actions as well as names
are substituted for names. The idea is that given an action a : m → n, we package up the
action in a code paq : ǫ → (m⇒n), which uses the arity (m⇒n) to keep a record of the arity
structure of a. Such a “closure” of an action can be copied and discarded via substitution,
and unpacked using an application control ap.

Definition 2.5 The higher-order action calculus HAC(K ), where K = (P,K) is a signature,
is given by extending the definition of action calculi as follows:

1. the set of higher-order primes and the set of higher-order arities are constructed from
the following grammars:

(basic) primes p0, q0 . . . ∈ P

higher-order primes p, q . . . ::= p0 | m⇒n
higher-order arities m,n . . . ::= p | m⊗ n | ǫ

2. the set of terms is generated by the rules in Definition 2.1, plus the rules

a : m → n
paq : ǫ → m⇒n ap : (m⇒n)⊗m → n

3. the equational theory is the set of equations upon terms generated from the axioms in
Definition 2.2, plus the higher-order axioms

(σcode) (paq ⊗ id) · (x)b = b{paq/〈x〉}
(β) (paq⊗ id) · ap = a
(ηname) p(〈x〉 ⊗ id) · apq = 〈x〉

4. the dynamic relation is defined in the same way as the dynamics for action calculi.

✷

In addition to the original axioms in [Mil94a], we include the axiom ηname. Notice that,
for a code paq , we can prove p(paq ⊗ id) · apq = paq using the β-axiom. The axiom ηname

states the analogous equality for higher-order names. With this axiom, names and codes thus
behave in a similar fashion. In section 4, we give further justification for ηname by studying
the models.
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Remark 2.6 In [Mil94a], Milner shows that adding a “strong” η axiom of the form

p(a⊗ id) · apq = a

collapses the structure, in the sense that HAC(K ) with the strong η-axiom is not a conser-
vative extension of AC(K ). In section 5, we prove the conservativity result for our weaker
axiom ηname. ✷

While it is possible to regard the higher-order axioms as a part of dynamics and study the
properties of the reduction theory (as given in [Mil94a]), we concentrate in this paper on the
study of equational theory, since our primary concern is to identify the semantic models of
the calculi.

2.3 Reflexive Action Calculi

In [Mil94b] Milner extends action calculi to allow cyclic bindings of names by introducing an
operator called reflexion.

Definition 2.7 The reflexive action calculus ACr(K ), where K = (P,K) is a signature, is
given by extending the definition of action calculi as follows:

1. the sets of primes and arities are the same as those for the basic action calculus gener-
ated from the signature K ;

2. the set of terms is generated by the rules in Definition 2.1, plus the reflexion rule

a : p⊗m → p⊗ n

↑m,n
p (a) : m → n

(in the sequel, subscripts may be omitted)

3. the equational theory is the set of equations upon terms generated from the axioms in
Definition 2.2, plus the reflexion axioms:

ρ1 idp = ↑p (pp,p)
ρ2 ↑p (a)⊗ id = ↑p (a⊗ id)
ρ3 ↑p (a) · b = ↑p (a · (idp ⊗ b))
ρ4 a· ↑p (b) = ↑p ((idp ⊗ a) · b)
ρ6 ↑q (↑p (a)) = ↑p (↑q ((pq,p ⊗ id) · a · (pp,q ⊗ id)))

4. the dynamic relation is defined in the same way as the dynamics for action calculi, with
the additional property that the relation is closed under the reflexion operator.

✷

The intuition behind this definition is that reflexion creates a cyclic binding, in the sense
that the construction of the term ↑m,n

p (a) : m → n can be pictured as:
PSfrag replacements

mm nn

pp
↑m,n
p

7→
aa
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Remark 2.8 We drop an axiom included in the original axiomatization in [Mil94b]

ρ5 (xq) ↑p (a) =↑p ((pp,q ⊗ id) · (xq)a)

which has been shown to be derivable from other axioms by Hasegawa (see [Mif96]). This
observation implies that the notion of reflexion is independent of the notion of names and
abstractions in action calculi – none of other axioms involve names nor abstractions. In fact,
the notion of reflexion turns out to make sense for any symmetric monoidal categories, as
an instance of the notion of trace of Joyal, Street and Verity for general balanced monoidal
categories. We will develop the semantics of reflexive action calculi along this line in Section
4. ✷

In the definition above, the reflexion operator is defined only on prime arities. We extend
it to general arities by

↑m,n
ǫ (a) ≡ a

↑m,n
p⊗l (a) ≡ ↑m,n

l (↑l⊗m,l⊗n
p (a)).

3 Type Theory

We introduce type theories corresponding to the closed fragments of action calculi and the
higher-order and reflexive extensions. In particular, let(rec)-bindings are used to represent
the sharing of terms and the equational theory distinguishes between those terms which can
be copied and discarded at will, the values, and those which cannot. Since action calculi
are completely determined by the closed fragment [Gar95, Gar98], our type theories are as
expressive as the corresponding action calculi.

3.1 First-Order Theory

Let us fix a signature K = (P,K) as introduced in the last section. The type theory T(K )
consists of sequents of the form Γ ⊢ t : n, where the context Γ = xp1

1 , . . . , xpm
m is a sequence of

distinct names (sometimes written ~xm), t is a term and n is an arity. This sequent corresponds
to a closed action a : |Γ| → n in AC(K ), where |Γ| denotes p1 ⊗ . . .⊗ pm.

Definition 3.1 The set of type-theoretic terms (usually just called terms) over K is defined
by the following grammar:

t ::= x | 0 | t⊗ t | let ~x be t in t | K((~x)t, . . . , (~x)t; t)

where we assume that t ⊗ 0 ≡ 0 ⊗ t ≡ t and s ⊗ (t ⊗ u) ≡ (s ⊗ t) ⊗ u for terms s, t and u
(strict associativity). ✷

The term K((~x1)t1, .., (~xr)tr; t) binds the variables from sequence ~xi in ti. Plotkin has pointed
out that this can be viewed as a variant of Aczel’s general binding operators [Acz80]. This
issue is discussed in [BGHP98] and a concrete example is given in Example 3.12. The term
let ~x be s in t binds the variables from sequence ~x in t. We write t{u/x} for the standard
capture-free substitution.

Definition 3.2 A term is well-typed if it can be shown to annotate a sequent using the rules:

Γ, xp ⊢ x : p Γ ⊢ 0 : ǫ
Γ ⊢ s : m Γ ⊢ t : n
Γ ⊢ s⊗ t : m⊗ n

Γ ⊢ s : m Γ, ~xm ⊢ t : n

Γ ⊢ let ~x be s in t : n

Γ, ~xmi

i ⊢ si : ni (1 ≤ i ≤ r) Γ ⊢ t : m

Γ ⊢ K((~x1)s1, . . . , (~xr)sr; t) : n

Γ, xp, yq,Γ′ ⊢ t : m

Γ, yq, xp,Γ′ ⊢ t : m

where, in the derivation of K(. . .), K has arity rule ((m1, n1), . . . , (mr, nr)) → (m,n). ✷
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Note that terms do not have unique type derivations. This causes a few coherence issues, see
below.

The equality of the type theory should present no surprises; it gives the behaviour of the
let-bindings, which describes the sharing of resources. For example, the term let x be t in x⊗x
describes a term t which is shared by two x’s. It does not equal the term t⊗ t in general.

Definition 3.3 The equality judgement Γ ⊢ s = t : n, where Γ ⊢ s : n and Γ ⊢ t : n,
is defined as a congruence relation on well-typed terms of the same arity under the same
context generated from the axioms:

let x be y in t = t{y/x}
let ~x be t in ~x = t
let ~x be (let ~y be s in t) in u = let ~y be s in let ~x be t in u
let ~x, ~y be s⊗ t in u = let ~x be s in let ~y be t in u
s⊗ (let ~x be t in u) = let ~x be t in s⊗ u
(let ~x be s in t)⊗ u = let ~x be s in t⊗ u
K((~x1)t1, . . . , (~xr)tr; let ~x be s in t) = let ~x be s in K((~x1)t1, . . . , (~xr)tr; t)

✷

Note that both sides of an axiom must have the same type under the same context. For
instance, in the fourth axiom, the variables in the ~x cannot be free in t (written ~x 6∈ fn(t)),
and in the last axiom ~x 6∈

⋃r
i=1 fn((~xi)ti).

Remark 3.4 Our syntax allow “empty bindings” such as let be s in t. It follows that
let be s in t = s ⊗ t = t ⊗ s, so such an empty binding has no real binding effect – the
subterm s represents an isolated resource which can move around the term freely. ✷

Lemma 3.5 The following are derivable.

1. (simultaneous substitution)

Γ ⊢ let ~x be ~y in t = t{~y/~x} : n

for Γ, ~xm ⊢ t : n, where ~y : m do not occur in Γ nor in ~x

2. (α-conversion)
Γ ⊢ let ~x be s in t = let ~y be s in t{~y/~x} : n

for Γ ⊢ s : m and Γ, ~xm ⊢ t : n, where ~y : m do not occur in Γ nor in ~x

3. (commutativity of independent let-bindings)

Γ ⊢ let ~x be s in let ~y be t in u = let ~y be t in let ~x be s in u : n

for Γ ⊢ s : m1, Γ ⊢ t : m2 and Γ, ~xm1 , ~ym2 ⊢ u : n

✷

Remark 3.6 An alternative choice is to work with a two-context type theory, whose sequents
have the form Γ;Σ ⊢ t : n. Such a type theory is introduced in [BGHP96, BGHP98]. It
has a direct connection with the corresponding action calculus, in that the above sequent
corresponds to an action a : |Σ| → n with free names contained in Γ. It also gives a simpler
connection with intuitionistic linear type theories with two contexts [Ben95, BP98]. From
the results in [Gar95], we know that these type theories are equivalent. For our purposes, it
is enough to work with the simple type theories presented here. ✷
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3.2 Connection with Action Calculi

We give the formal justification of our assertion that the type theory T(K ) corresponds to
closed actions of AC(K ), by giving translations between these two systems which are sound
and inverse to each other.

Definition 3.7 For every a : m → n in AC(K ) and sequence of distinct names ~x with
|~x| = m which are not free in a, we define a term Φ~x(a) by induction on the structure of a:

Φ~x(idm) = ~x
Φ~x(a · b) = let ~y be Φ~x(a) in Φ~y(b), where ~y 6∈ fn(b)

Φ~x,~y(a⊗ b) = Φ~x(a)⊗ Φ~y(b)

Φ~x,~y(pm,n) = ~y ⊗ ~x, where |~x| = m and |~y| = n

Φxp,~x((y
p)a) = Φ~x(a){x/y}

Φ∅(〈x
p〉) = x

Φ~x(K(a1, . . . , ar)) = K((~x1)Φ~x1
(a1), . . . , (~xr)Φ~xr

(ar); ~x)

✷

Proposition 3.8

1. Given a : m → n such that fn(a) is contained in ~y (with |~y| = l), we have ~yl, ~xm ⊢
Φ~x(a) : n.

2. Given a = b : m → n such that fn(a, b) is contained in ~y (with |~y| = l), we have
~yl, ~xm ⊢ Φ~x(a) = Φ~x(b) : n. ✷

The translation from T(K ) to AC(K) involves an inductive definition on the derivations of
sequents. However, it is routine to prove a coherence result which shows that the translation
is independent of the choice of derivation up to provable equality. We therefore simplify
notation by working with sequents rather than derivations.

Definition 3.9 Given a sequent Γ ⊢ t : n in T(K ), we define a closed term Ψ(Γ ⊢ t : n) :
|Γ| → n by induction on the derivation of sequents:

Ψ(Γ, xp ⊢ x : p) = ω|Γ| ⊗ idp

Ψ(Γ ⊢ 0 : ǫ) = ω|Γ|

Ψ(Γ ⊢ s⊗ t : n1 ⊗ n2) = ∆|Γ| · (Ψ(Γ ⊢ s : n1)⊗ Ψ(Γ ⊢ t : n2))
Ψ(Γ ⊢ let ~y be s in t : n) = ∆|Γ| · (id|Γ| ⊗Ψ(Γ ⊢ s : m)) ·Ψ(Γ, ~ym ⊢ t : n)
Ψ(Γ ⊢ K((~x1)s1, . . . ; t) : n) = ∆|Γ| · (id|Γ| ⊗Ψ(Γ ⊢ t : m))·

(~x)K((〈~x〉 ⊗ idm1
) ·Ψ(Γ, ~xm1

1 ⊢ s1 : n1), . . .)
Ψ(Γ, yq, xp,Γ′ ⊢ t : n) = (id|Γ| ⊗ pq,p ⊗ id|Γ′|) ·Ψ(Γ, xp, yq,Γ′ ⊢ t : n)

✷

The following results state that the translations are sound and essentially inverse to each
other, up to provable equality.

Proposition 3.10

1. Given Γ ⊢ t : n, it follows that Ψ(Γ ⊢ t : n) is a closed term of arity |Γ| → n.

2. Given Γ ⊢ s = t : n, it follows that Ψ(Γ ⊢ s : n) = Ψ(Γ ⊢ t : n). ✷
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Theorem 3.11

1. Given Γ ⊢ t : n, we have Γ ⊢ ΦΓ(Ψ(Γ ⊢ t : n)) = t : n in T(K ).

2. Given a closed term a : m → n and a fresh distinct sequence of names ~xm, we have
Ψ(Φ~x(a)) = a. ✷

These results establish the connection between the static action calculus and our type
theory. It is routine to extend them to include the dynamics. The dynamics on the type
theory T(K ) is a preorder ց on the equivalence classes of the well-typed terms which respects
the types and contexts, and is closed under all term constructions except controls, such that
~x ց t implies t = ~x and that ~x⊗ s ց ~x⊗ t implies s ց t.

It is easy to see that the dynamics of an action calculus determines that of the corre-
sponding type theory, and vice versa. Such dynamics can be regarded as a graph rewriting
system on sharing graphs (see [Has97b, Mil96]).

Example 3.12 The control plus for non-determinism in Example 2.4 can be accommodated
in our type theory as

Γ, ~xm ⊢ s : n Γ, ~ym ⊢ t : n Γ ⊢ u : m

Γ ⊢ plus((~x)s, (~y)t;u) : n

with dynamics given by

plus((~x)s, (~y)t;u) ց let ~x be u in s and plus((~x)s, (~y)t;u) ց let ~y be u in t.

✷

3.3 Higher-Order Theory

We extend the type theory T(K ) above to incorporate higher-order features. As before, we
fix a signature K = (P,K).

Definition 3.13 The higher-order theory HT(K ) is given by extending the definition of the
first-order theory T(K ) as follows:

1. the types are the higher-order arities given in Definition 2.5;

2. the terms are those for T(K ) plus lambda abstraction λ~x.t and application st where s
and t are terms; the associated typing rules are

Γ, ~xm ⊢ t : n

Γ ⊢ λ~x.t : m⇒n
Γ ⊢ s : m⇒n Γ ⊢ t : m

Γ ⊢ st : n

3. the equality judgement is defined as Definition 3.3, with additional axioms:

(σv) let x be λ~y.s in t = t{λ~y.s/x}
(β) (λ~x.s)t = let ~x be t in s
(η0) λ~x.y~x = y

(let ~x be s in t)u = let ~x be s in tu
s(let ~x be t in u) = let ~x be t in su

✷
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Remark 3.14 Note that we allow “empty abstraction” like λ.t, and our axioms imply that
(λ.t)s = let be s in t = s⊗ t = t⊗ s for s : ǫ (in particular (λ.t)0 = t) as well as λ.y0 = y.
Such an empty abstraction is used in Section 7 for creating recursion under the presence of
reflexion. ✷

Let us state a few immediate consequences of these axioms:

Lemma 3.15 The following equalities are derivable.

1. (α-conversion)
Γ ⊢ λ~x.t = λ~y.t{~y/~x} : m⇒n

for Γ, ~xm ⊢ t : n, where ~y : m do not occur in Γ nor in ~x

2. (call-by-value β)
Γ ⊢ (λ~x.s)~v = s{~v/~x} : n

for Γ, ~xm ⊢ s : n and Γ ⊢ ~v : m, where ~v is a tensor product of variables and lambda
abstractions

3. (call-by-value η)
Γ ⊢ λ~y.v~y = v : m⇒n

for Γ ⊢ v : m⇒n, where v is either a variable or a lambda abstraction

✷

3.4 Connection with Higher-Order Action Calculi

It is straightforward to extend the translations between T(K ) and the closed actions of AC(K )
to translations between HT(K ) and the closed actions of HAC(K ). These translations are
sound and essentially inverse to each other. We define the translations below.

Definition 3.16

For every action a : m → n in HAC(K ) and a sequence of distinct names ~x with |~x| = m
which are not free in a, we define a term Φ~x(a) by induction on the structure of a, using
definition 3.7 and the additional cases:

Φ∅(paq) = λ~x.Φ~x(a) where ~x 6∈ fn(a)
Φy,~x(ap) = y~x

Given a sequent Γ ⊢ t : n in HT(K ), we define a closed action Ψ(Γ ⊢ t : n) : |Γ| → n by
induction on the derivation of sequents, using definition 3.9 and the additional cases:

Ψ(Γ ⊢ λ~y.t : m⇒n) = (~x)p(〈~x〉 ⊗ idm) ·Ψ(Γ, ~ym ⊢ t : n)q where |~x| = |Γ|
Ψ(Γ ⊢ st : n) = ∆|Γ| · (Ψ(Γ ⊢ s : m⇒n)⊗Ψ(Γ ⊢ t : m)) · ap

✷

It is easy to extend the results given in Proposition 3.8, Proposition 3.10 and Theorem 3.11
to the higher-order setting.
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3.5 Reflexive Theory

In the similar manner we extend the type theory T(K ) to accommodate reflexion. A signature
K = (P,K) is fixed as before.

Definition 3.17 The reflexive theory Tr(K ) is given by modifying the definition of the type
theory as follows:

1. the types are the arities;

2. the terms are generated from the following grammar:

t ::= x | 0 | t⊗ t | letrec ~x be t in t | K((~x)t, . . . , (~x)t; t)

3. the well-typed terms are defined as those of T(K ), except that we replace the let-binding
by the letrec binding:

Γ, ~xm ⊢ s : m Γ, ~xm ⊢ t : n

Γ ⊢ letrec ~x be s in t : n

4. the equality judgement is defined as before from the following axioms.

letrec x, ~y be z ⊗ s in t = letrec ~y be s{z/x} in t{z/x} (x 6≡ z)
letrec ~x be t in ~x = t
letrec ~x be (letrec ~y be s in t) in u = letrec ~x, ~y be t⊗ s in u
letrec ~x be s in letrec ~y be t in u = letrec ~x, ~y be s⊗ t in u
s⊗ (letrec ~x be t in u) = letrec ~x be t in s⊗ u
(letrec ~x be s in t)⊗ u = letrec ~x be s in t⊗ u
letrec ~x, ~y, ~z be s1 ⊗ s2 ⊗ s3 in t = letrec ~y, ~x, ~z be s2 ⊗ s1 ⊗ s3 in t
K((~x1)t1, . . . , (~xr)tr; letrec ~x be s in t) = letrec ~x be s in K((~x1)t1, . . . , (~xr)tr; t)

✷

Again we note that both sides of an axiom must have the same type under the same context.
As for the let-binding in the non-reflexive theory, α-conversion of letrec-bound variables is
derivable:

Lemma 3.18 (α-conversion) If Γ, ~xm ⊢ s : m and Γ, ~xm ⊢ t : n and ~y 6∈ Γ ∪ ~x, then:

Γ ⊢ letrec ~x be s in t = letrec ~y be s{~y/~x} in t{~y/~x} : n.

✷

Example 3.19 Following Milner [Mil94b], we can regard a term with a trivial circularity
(letrec ~x be ~x in t) as a term t with locally declared variables ~x, and write (local ~x in t) for
this term. As a simple example, we consider the reflexive action calculus with plus (Example
3.12). We have a term

Γ, ~xm ⊢ s : m Γ, ~ym ⊢ t : m

Γ ⊢ letrec ~z be plus((~x)s, (~y)t; ~z) in ~z : m

which can react as

letrec ~z be plus((~x)s, (~y)t; ~z) in ~z ց local ~x in s or local ~y in t

✷



Higher-Order and Reflexive Action Calculi 12

3.6 Connection with Reflexive Action Calculi

The essential point in giving the translations between a reflexive action calculus and our type
theory is the observation that letrec-binding and reflexion are “mutually definable”:

Definition 3.20 For every a : m → n in ACr(K ) and sequence of distinct names ~x with
|~x| = m which are not free in a, we define a term Φ~x(a) by induction on the structure of a
as in definition 3.7 except the following cases:

Φ~x(a · b) = letrec ~y be Φ~x(a) in Φ~y(b), where ~y 6∈ fn(b)
Φ~x(↑p (a)) = letrec y, ~x be Φy,~x(a) in ~x, where y 6∈ fn(b)

Given a sequent Γ ⊢ t : n in Tr(K ), we define a closed action Ψ(Γ ⊢ t : n) : |Γ| → n by
induction on the derivation of sequents, using definition 3.9 except the case of the letrec
binding:

Ψ(Γ ⊢ letrec ~x be s in t : n) =
∆|Γ| · (id|Γ|⊗ ↑m (pm,|Γ| ·Ψ(Γ, ~xm ⊢ s : m) ·∆m)) ·Ψ(Γ, ~xm ⊢ t : n)

✷

Again it is easy to extend the results given in Proposition 3.8, Proposition 3.10 and Theorem
3.11 to the reflexive setting.

4 Categorical Models

We base our models of higher-order and reflexive action calculi on those of action calculi
proposed by Power [Pow96]. Power’s models consist of a cartesian category for interpreting
the names, a symmetric monoidal category for interpreting arbitrary actions, and a functor
for relating the cartesian category with the symmetric monoidal category. We extend Power’s
idea to the higher-order case, where the cartesian category interprets the values (the names
and codes), and adjunctions describe the interplay between the two categories. We also
extend to the reflexive case, by adding the notion of a trace operator due to Joyal, Street and
Verity [JSV96] to the symmetric monoidal category. Our approach enables us to describe
the models of action calculi and the higher-order and reflexive extensions in a simple uniform
way. We also note that similar structure has been used for describing models of intuitionistic
linear type theory [Ben95, BP98] in a slightly different but related context (see [BGHP96],
[BGHP98] and Section 8).

4.1 Models of The First-Order Theories

First we describe the models for action calculi, which we call action models. The carrier
of an action model is a triple (C,S,F), where C is a strict cartesian category, S is a strict
symmetric monoidal category, and F : C → S is an identity-on-objects strict symmetric
monoidal functor. Therefore we identify Obj(C) with Obj(S): the functor F maps the
terminal object of C to the unit object of S, and binary products to monoidal products,
preserving the symmetric monoidal structure. In addition, each action model is specified by
a signature K and provides an interpretation function of the prime arities as objects of C,
and of control operators as natural transformations.

Remark 4.1 In [Pav97], Pavlovic gives related models of action calculi, consisting of a single
symmetric monoidal category with a sub-cartesian category. ✷
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Definition 4.2 An action model over signature K , denoted by A, is a carrier (C,S,F)
equipped with a function [[ ]]P : P → Obj(C), and for each operator K with the arity rule
((m1, n1), . . . , (mr, nr)) → (m,n), a natural transformation

[[K]]K : S(F( )⊗ [[m1]], [[n1]])× . . .× S(F( )⊗ [[mr]], [[nr]]) → S(F( )⊗ [[m]], [[n]])

where [[m]] is defined inductively by [[ǫ]] = I (the terminal object of C, equivalently the unit
object of S) and [[p⊗m]] = [[p]]P⊗ [[m]]. An action model is faithful if the functor F is faithful.
It is small if the categories C, S are small. ✷

Notation. Where convenient, we omit the subscripts from [[ ]]P and [[ ]]K. We sometimes write
[[ ]]A to emphasise the particular action model A under consideration.

Definition 4.3 An action morphism f : A1 → A2 between two action models over signature
K is a pair (fc, fs) where fc : C1 → C2 is a functor preserving finite products strictly, and
fs : S1 → S2 is a strict symmetric monoidal functor such that F2◦fc = fs◦F1, for each p ∈ P

we have fc([[p]]
A1

P
) = [[p]]A2

P
, and, for each operator K with arity rule ((m1, n1), . . . , (mr, nr)) →

(m,n), we have fs(([[K]]
A1

K )( )(..)) = ([[K]]A2

K )fc( )(fs(..)). ✷

The category of small action models, AMod(K ), is the category whose objects are the small
action models, and whose morphisms are the action morphisms, with the obvious identities
and composition.

Now we give the interpretation of the type theory T(K ) in an arbitrary action model
A, and state the soundness and completeness results. Given the interpretation of arities
[[ ]] : M → Obj(C), we extend this to contexts by defining [[Γ]] = [[|Γ|]].

Definition 4.4 Given type theory T(K ) and action model A, the interpretation [[ ]] of se-
quents Γ ⊢ t : m in the type theory as morphisms [[Γ]] → [[m]] in S is defined by induction on
the derivation of sequents:

[[Γ, xp ⊢ x : p]] = F(π′
[[Γ]],[[p]])

[[Γ ⊢ 0 : ǫ]] = F(![[Γ]])
[[Γ ⊢ s⊗ t : m⊗ n]] = F(∆[[Γ]]); ([[Γ ⊢ s : m]]⊗ [[Γ ⊢ t : n]])
[[Γ ⊢ let ~x be s in t : n]] = F(∆[[Γ]]); (id[[Γ]] ⊗ [[Γ ⊢ s : m]]); [[Γ, ~xm ⊢ t : n]]
[[Γ ⊢ K((~x1)s1, . . . , (~xr)sr; t) : n]] = F(∆[[Γ]]); (id[[Γ]] ⊗ [[Γ ⊢ t : m]]);

[[K]][[Γ]]([[Γ, ~x
m1

1 ⊢ s1 : n1]], . . . , [[Γ, ~x
mr
r ⊢ sr : nr]])

[[Γ, yq, xp,Γ′ ⊢ t : n]] = (id[[Γ]] ⊗ c[[q]],[[p]] ⊗ id[[Γ′]]); [[Γ, x
p, yq,Γ′ ⊢ t : n]]

where π′, ! and ∆ are the projection, terminal map and diagonal map in the cartesian category
C respectively, and c is the symmetry of S. ✷

The proof of the soundness of the interpretation is routine. Completeness is proved by
defining a term model constructed from T(K ) (or the closed fragment of AC(K ) [Gar95,
Pow96]). The basic idea is that the morphisms in the cartesian category C are constructed
from (the equivalence classes of) sequents of the form Γ ⊢ ~x : m and the symmetric monoidal
category S is constructed from (the equivalence classes of) arbitrary sequents Γ ⊢ t : m. The
functor F is the obvious inclusion functor from C to S. The interpretation [[ ]]P and [[ ]]K are
then determined routinely.

Theorem 4.5

1. (Soundness) Given Γ ⊢ s = t : n in T(K ), we have [[Γ ⊢ s : n]] = [[Γ ⊢ t : n]] in any
action model.
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2. (Completeness) Given derivations Γ ⊢ s : n and Γ ⊢ t : n in T(K ), if [[Γ ⊢ s : n]] = [[Γ ⊢
t : n]] in every action model then Γ ⊢ s = t : n.

3. (Initiality) There is an initial term model A0 in AMod(K ). ✷

The results above only deal with the static part of the type theory (hence action calculi).
We can give a semantic interpretation of dynamics in an action model as a local preorder � on
the symmetric monoidal category, such that the arrows coming from the cartesian category
are minimal and satisfying the condition that idX ⊗ f � g implies f � g′ for some g′ and
g = idX ⊗ g′. This may look a bit ad hoc, but is a natural interpretation of the condition of
dynamics for action calculi (Definition 2.3).

Example 4.6 To interpret an action calculus with non-determinism primitive plus in Exam-
ple 2.4, one may choose C as (the strict equivalent of) the category of sets and functions, and
S as (the strict equivalent of) the category of sets and total relations; F is then the obvious
inclusion functor. The interpretation of plus is simply given by the union of relations. We
can then interpret the dynamics by the local preorder of the inclusion of relation. Obviously
a total relation is minimal with respect to this preorder if and only if it is a function: that
is, it comes from C. A key feature of action calculi is that the dynamics are not usually
closed under the control operators. Notice that in this model the preorder is closed under
the natural transformation, so the model does not capture this feature. ✷

4.2 Higher-Order Extension

The intuition behind the definition of an action model with carrier (C,S,F) is that the
cartesian category C describes the behaviour of names in action calculi. In the higher-
order case, the codes (λ-terms) have a similar behaviour to the names in that they can be
substituted for names of the appropriate arity. Our definition of higher-order models extends
action models to reflect this fact, by requiring that the functor F( ) ⊗ X : C → S has a
right adjoint representing the arrow construction, which naturally extends the definition of
exponents in cartesian closed categories given by right adjoint of the product functors ( )×X.

Definition 4.7 A higher-order action model over signature K is an action model with carrier
(C,S,F) such that the functor F( )⊗X : C → S has a (chosen) right adjoint X⇒ : S → C
for each object X, where the definition of [[m]] is adapted to the higher-order case by an
additional requirement that [[m⇒ n]] = [[m]]⇒ [[n]]. Again, a higher-order action model is
faithful when the functor F is faithful, and it is small if the categories C and S are small. ✷

We write ap : (X⇒Y ) ⊗X → Y (in S) for (components of) the counit of the adjunction,
and f∗ : A → X⇒B in C for the adjunct of f : A⊗X → B in S, i.e. f∗ is the unique arrow
satisfying (F(f∗)⊗X); ap = f .

Definition 4.8 Let H1 with carrier (C,S,F) and H2 with carrier (C′,S ′,F ′) be higher-order
action models over the same signature K . A higher-order action morphism f : H1 → H2 is
an action morphism (fc, fs) such that it is a map of adjoints ([Mac71], p.97) from F( )⊗X ⊣
X⇒( ) to F ′( )⊗ fs(X) ⊣ fs(X)⇒ ′( ): that is, fc(X⇒( )) = fs(X)⇒ ′fs( ) holds and the
following diagram commutes for each X , A and B.
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S ′(F ′(fc(A))⊗
′ fs(X), fs(B))

S ′(fs(F(A)⊗X), fs(B))

S(F(A)⊗X,B)

C′(fc(A), fs(X)⇒ ′fs(B))

C′(fc(A), fc(X⇒B))

C(A,X⇒B)

❄
fs( )

❄
fc( )

✲( )∗

✲( )∗

✷

The category of small higher-order action models, HAMod(K ), is the category whose objects
are the small higher-order action models, and whose morphisms are the higher-order action
morphisms, with the obvious identities and composition.

The interpretation of the type theory HT(K) in an arbitrary higher-order action model
H is given as an extension of Definition 4.4 to account for λ-abstraction and application.

Definition 4.9 Given type theory HT(K ) and higher-order action model H, the interpreta-
tion [[ ]] of sequents Γ ⊢ t : m in the type theory as morphisms [[Γ ⊢ t : m]] : [[Γ]] → [[m]] in S
is defined by induction on the structure of the derivation of sequents, as given in Definition
4.4 and the additional cases:

[[Γ ⊢ λ~x.t : m⇒n]] = F([[Γ, ~xm ⊢ t : n]]∗)
[[Γ ⊢ st : n]] = F(∆[[Γ]]); ([[Γ ⊢ s : m⇒n]]⊗ [[Γ ⊢ t : m]]); ap

✷

While soundness of the interpretation is routinely checked, the construction of the term model
from the type theory (or the closed fragment of the higher-order action calculus) requires some
careful calculation. In this case the cartesian category part is constructed from the values:
that is, the variables and λ-abstractions. The non-trivial part is to check that X⇒ ( ) does
give a right adjoint of F( ) ⊗X , which requires the axiom η0 (ηname in higher-order action
calculi). Without this axiom, X⇒ ( ) fails to be a functor, though still it is a semifunctor,
and in fact gives rise to a right semiadjoint [Hay85] of F( )⊗X. In this sense, the semantic
role of the axiom η0 (ηname) is the same as that of the η axiom of the simply typed lambda
calculus.

Theorem 4.10

1. (Soundness) Given Γ ⊢ s = t : n in HT(K ), we have [[Γ ⊢ s : n]] = [[Γ ⊢ t : n]] in any
higher-order action model.

2. (Completeness) Given derivations Γ ⊢ s : n and Γ ⊢ t : n in HT(K ), if [[Γ ⊢ s : n]] =
[[Γ ⊢ t : n]] in every higher-order action model then Γ ⊢ s = t : n in HT(K ).

3. (Initiality) There is an initial term model H0 in HAMod(K ). ✷

Remark 4.11 In a higher-order action model, it is easy to show using the Yoneda lemma
that

SetC
op

(
∏

i=1,...,r S(F( )⊗Ai, Bi),S(F( )⊗A,B))

≃ S(
⊗

i=1,...r F(Ai⇒Bi)⊗ A,B)

≃ C(
∏

i=1,...,r(Ai⇒Bi), A⇒B)
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This fact means that it is possible to interpret the control operators as morphisms rather than
natural transformations in the higher-order setting. Syntactically, this means that we can
replace parameterized controls by non-parameterized (higher-order) ones without changing
the equational theory. We do not know how this affects the dynamics in general. ✷

Example 4.12 The semantic model of the calculus with non-determinism primitive plus,
given in Example 4.6, is in fact a higher-order action model: let X⇒ Y be the set of total
relations from X to Y , and for a total relation R : A⊗X → B (the tensor product is just the
direct product of sets) its adjunct R∗ : A → X ⇒B (in C, hence a function) is determined
by xR∗(a)b if and only if (a, x)Rb. The above remark about the controls tells us that the
interpretation of plus can be given as a total relation from ([[m]]⇒ [[n]])⊗ ([[m]]⇒ [[n]])⊗ [[m]]
to [[n]]; explicitly it is given by the relation R where (r, s, x)Ry if and only if x(r ∪ s)y. ✷

4.3 Reflexive Extension

Now we turn to the models for the reflexive setting. For interpreting the reflexion or the
letrec binding, we wish to have a semantic structure for representing these kind of circularity.
Fortunately such a concept has been developed by Joyal, Street and Verity, called traced
monoidal categories [JSV96]. Following the work by Mifsud [Mif96] and Hasegawa [Has97b],
we show that traced monoidal categories can be used as models of the reflexive action calculi.
Though the notion of trace is defined for general balanced monoidal categories (monoidal
categories with braiding and twisting), for our purpose we only need the case of symmetric
monoidal categories as presented in [Has97a, Has97b]. Further discussions and applications
of traced monoidal categories in the context of computer science are found in [Abr96, ABP98,
BCS98]. As a precursor we note that Căzănescu and Ştefănescu had the notion of biflows
in mid ’80s [CS88] whose axiomatization is equivalent to that of traced symmetric monoidal
categories; see also [Mil94b] for historical remarks on related concepts.

Definition 4.13 A symmetric monoidal category C is said to be traced if it is equipped with
a natural family of functions, called a trace,

TrXA,B : C(A⊗X,B ⊗X)−→C(A,B)

subject to the following three conditions:

• Vanishing:

TrIA,B(f) = f : A → B

where f : A−→B, and

TrX⊗Y
A,B (f) = TrXA,B(Tr

Y
A⊗X,B⊗X(f)) : A−→B

where f : A⊗X ⊗ Y−→B ⊗X ⊗ Y

• Superposing:

TrXC⊗A,C⊗B(idC ⊗ f) = idC ⊗ TrXA,B(f) : C ⊗ A−→C ⊗B

where f : A⊗X−→B ⊗X

• Yanking:

TrXX,X(cX,X) = idX : X−→X

where c is the symmetry, i.e. cX,Y : X ⊗ Y−→Y ⊗X.
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✷

We may omit the subscripts if there is no confusion. To help with the intuition, we present
a graphical version of these axioms as well as three naturality conditions in Appendix A.
We note that a symmetric monoidal category can be traced in many ways, so when we talk
about a traced symmetric monoidal category we always fix a specific choice.

Now the models of the reflexive action calculi are simply defined by assuming that the
symmetric monoidal category part is traced.

Definition 4.14 A reflexive action model over signature K is an action model with carrier
(C,S,F) such that the symmetric monoidal category S is traced. A reflexive action morphism
between reflexive action models is an action morphism which preserves trace on the nose. ✷

We write AModr(K ) for the category of small reflexive action models.

Definition 4.15 Given type theory Tr(K ) and reflexive action model R, the interpretation
[[ ]] of sequents Γ ⊢ t : m in the type theory as morphisms [[Γ ⊢ t : m]] : [[Γ]] → [[m]] in S is
defined by induction on the structure of the derivation of sequents, as given in Definition 4.4
except the case of the letrec binding:

[[Γ ⊢ letrec ~x be s in t]] =
F(∆[[Γ]]); (id[[Γ]] ⊗ Tr[[m]]([[Γ, ~xm ⊢ s : m]]; ∆[[m]])); [[Γ, ~x

m ⊢ t : n]]

✷

We give a graphical explanation of this interpretation in Appendix A.
It is routine to prove the soundness and completeness of the interpretation, which is

similar to checking the correspondence between the reflexive action calculi and the type
theory. A detailed calculation and discussion can be found in [Mif96, Has97b].

Theorem 4.16

1. (Soundness) Given Γ ⊢ s = t : n in Tr(K ), we have [[Γ ⊢ s : n]] = [[Γ ⊢ t : n]] in any
reflexive action model.

2. (Completeness) Given derivations Γ ⊢ s : n and Γ ⊢ t : n in Tr(K ), if [[Γ ⊢ s : n]] =
[[Γ ⊢ t : n]] in every reflexive action model then Γ ⊢ s = t : n in Tr(K ).

3. (Initiality) There is an initial term model in AModr(K ). ✷

Example 4.17 We slightly modify the semantic model of the calculus with non-determinism
primitive plus, given in Example 4.6, to accommodate reflexion. As Example 4.6 we choose C
as the category of sets and functions. For S, we take the category of sets and (not necessarily
total) relations, with F the obvious inclusion. Then the category S is traced in the following
sense: given a relation r : A×X → B ×X, we define its trace TrX(r) : A → B by

a TrX(r) b iff ∃x ∈ X (a, x) r (b, x)

Thus this setting gives a sound semantic model of the reflexive action calculus with the non-
determinism primitive plus. Actually this is at the same time a higher-order action model,
thus we can interpret the higher-order reflexive action calculus in this setting (see Section
7). ✷
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5 Conservativity of Higher-Order Extension

Since the higher-order theories (higher-order action calculi or our higher-order type theories)
are obtained from the first-order ones by adding new constructs and additional axioms, there
is an obvious sound translation from the first-order theories to the higher-order ones. A
non-trivial fact is that this translation is (statically) conservative. In [Mil94a], Milner gives a
syntactic proof of conservativity by appealing to a normal form result on higher-order action
calculi, using the so-called higher-order molecular forms. It is easy to extend his syntactic
result to incorporate our axiom ηname. Here we give another proof, using the properties of our
semantic models. While conservativity of the reflexive action calculi over the action calculi
is also true and syntactically provable using reflexive molecular forms [Mil94b], it seems that
our semantic method cannot be used for the reflexive setting – see the discussion at the end
of this section.

The conservativity result is achieved by constructing a higher-order action model into
which the term model of the first-order theory faithfully embeds. In the case of standard
algebraic type theory, the corresponding result is well-known. Given a cartesian category C,
the presheaf category [Cop,Set] is a cartesian closed category and the Yoneda embedding is
fully faithful and preserves products. Applying this fact to the term model for a first-order
algebraic theory, it follows that the algebraic type theory can be faithfully embedded in the
corresponding higher-order type theory. However, additional care is required for our setting,
since we need to deal with a symmetric monoidal category and a functor, as well as a cartesian
category, and moreover our theory contains parameterized control operators which do not
exist in standard algebraic theories.

We start with a known fact about the Yoneda construction (free cocompletion) on sym-
metric monoidal categories [Day70]. A systematic account can be found in [PR97].

Lemma 5.1 Let C, D be small (strict) symmetric monoidal categories and F : C−→D an
identity-on-objects strict symmetric monoidal functor. There exists a small (strict) symmet-
ric monoidal closed category C̄, a small (strict) symmetric monoidal category D̄ and fully
faithful strict symmetric monoidal functors inC : C−→C̄ and inD : D−→D̄, together with an
identity-on-objects strict symmetric monoidal functor F̄ : C̄−→D̄ such that F̄ ◦ inC = inD ◦F
and F̄ has a right adjoint. Moreover inC is dense.

Proof: Let C̄ be the presheaf category [Cop,Set] and inC be the Yoneda embedding (which is
dense [Mac71]). It is well-known that C̄ is the free symmetric monoidal cocompletion of C and
inC is strict symmetric monoidal [Day70, IK86]. (If C is strict, let C̄ be the strict equivalent
of [Cop,Set].) Then F extends to a strict symmetric monoidal functor F̂ : C̄−→[Dop,Set]
with a right adjoint U = [Fop,Set], so that F̂ strictly commutes with F . Although F̂ may
not be the identity on objects, we can factorize it as F̂ = J ◦ F̄ so that F̄ : C̄−→D̄ is the
identity on objects and J : D̄−→[Dop,Set] is fully faithful. A right adjoint of F̄ is then given
by U ◦ J : D̄−→C̄. The categories obtained above are not small, but we can cut down them
to be small and still retain the required structure. ✷

Proposition 5.2 Given an action model A over signature K , there is a higher-order action
model HA over the same signature K such that there is a faithful action morphism from A
to HA.

Proof: We just apply the previous lemma. Let (C,S,F) be the carrier of A. Since C̄ is
cartesian closed and F̄ has a right adjoint (say U), the functor F̄( ) ⊗ X also has a right
adjoint X⇒ ( ) = (U( ))X . We show that this carrier (C̄, S̄, F̄) gives a higher-order action
model. We choose the interpretation of arities [[ ]]′ so that [[m]]′ = inC([[m]]) for first-order
arity m. Now we consider the interpretation of controls. For simplicity, we consider just
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the case of single parameter. Assume that there is a family of functions KX : S(F(X) ⊗
A,B)−→S(F(X) ⊗ C,D) (natural in X in C). Since inS is fully faithful strict symmetric
monoidal and F̄ ◦ inC = inS ◦ F , this induces a family of functions K′

X : S̄(F̄(inC(X)) ⊗
inS(A), inS(B))−→S̄(F̄(inC(X)) ⊗ inS(C), inS(D)) natural in X in C. Since inC is dense,
we can extend K′ to a family of functions K′′

X : S̄(F̄(X) ⊗ inS(A), inS(B))−→S̄(F̄(X) ⊗
inS(C), inS(D)) natural in X in C̄. Thus given an interpretation of a control in A, we have
an interpretation of the control in HA of the carrier (C̄, S̄, F̄). And (inC , inS) is a faithful
action morphism. ✷

Taking A as the term model A0, we obtain a higher-order action model HA0
into which

A0 faithfully embeds. Because H0 is initial in HAMod(K ), there is a unique higher-order
action morphism from H0 to HA0

. On the other hand, since A0 is initial in AMod(K )
and also HAMod(K ) is a subcategory of AMod(K ), the following diagram commutes in
AMod(K ):

A0 HA0

H0

✲
faithful

❅
❅❅❘initial map in AMod(K ) �

��✒
initial map in HAMod(K )

Therefore the unique action morphism from A0 to H0 must be faithful.

Theorem 5.3 The higher-order theory HT(K ) is a conservative extension of the first-order
theory T(K ). ✷

Remark 5.4 We note that a stronger result called full completeness holds. Full completeness
states that, in addition to conservativity, for any term Γ ⊢ t : m of HT(K ) with no higher-
order arities in Γ nor m, there exists a term Γ ⊢ s : m of T(K ) such that Γ ⊢ s = t : m
is probable in HT(K ). This result is syntactically derivable just by inspecting Milner’s
conservativity proof using molecular forms [Mil94a] though Milner did not state it explicitly.
In the semantic setting, full completeness amounts to saying that the corresponding action
morphism between the term models is fully faithful. It is possible to modify our proof method
for conservativity to that for full completeness by constructing yet another model using
categorical gluing (see for instance [Cro93, MS93]). However this semantic proof involves
several category theoretic tools which are behind the scope of this paper, and we postpone
it to a forthcoming paper. ✷

It seems difficult to scale up our proof method to the reflexive setting, essentially because
our model construction does not respect trace. We also note that conservativity of the higher-
order reflexive theory (see Section 8) over the first-order reflexive theory remains open. Our
semantic proof method does not help. Syntactically the higher-order reflexive theory is
neither confluent (by the same reason as the non-confluence of cyclic lambda calculi [AK94])
nor normalizing. It therefore seems hard to extend Milner’s proof for the reflexive setting.

6 Notions of Computation

We show that the higher-order action calculi conservatively extend Moggi’s computational λ-
calculus [Mog88], with an additional axiom for commuting let-bindings. Whilst it is possible
to give a syntactic proof of this result, we give a simpler comparison by showing that the
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models of higher-order action calculi correspond to Moggi’s semantic framework called notions
of computation [Mog91].

Independently, Pavlovic has also mentioned the connection between his models of action
calculi and notions of computation [Pav97].

6.1 The Computational Lambda Calculus

We reproduce the computational lambda calculus (λc-calculus) below, using the simply typed
version as found in [MOTW95].

Definition 6.1 The computational lambda calculus is determined by the following data.

1. [Types] The set of types over the set P (called base types) is defined by the grammar

σ ::= p ∈ P | σ⇒σ

2. [Terms and Values] The sets of terms and values over the set of variables V is defined
by the grammar

terms t ::= x ∈ V | λx.t | tt | let x be t in t
values v ::= x | λx.t

3. [Typing judgements] We say that a term is well-typed if it can be shown to annotate a
sequent using the rules

Γ, xσ ⊢c x : σ

Γ, xσ ⊢c t : τ

Γ ⊢c λx.t : σ⇒τ

Γ ⊢c s : σ⇒τ Γ ⊢c t : σ

Γ ⊢c st : τ

Γ ⊢c s : σ Γ, xσ ⊢c t : τ

Γ ⊢c let x be s in t : τ

Γ, xσ, yσ
′

,Γ′ ⊢c t : τ

Γ, yσ
′

, xσ,Γ′ ⊢c t : τ

4. [Equality judgements] We define an equality judgement Γ ⊢c s = t : σ, where Γ ⊢c s : σ
and Γ ⊢c t : σ, as the congruence relation generated by the axioms:

(βv) (λx.t)v = t{v/x}
(ηv) λx.vx = v, for x not free in v
(letv) let x be v in t = t{v/x}
(id) let x be t in x = t
(comp) let y be (let x be s in t) in u = let x be s in let y be t in u
(let.1) et = let z be e in zt
(let.2) ve = let x be e in vx

where e ranges over non-values: that is, applications and let-blocks.

✷

It is not hard to see that the obvious translation from the computational lambda calculus
(with the base types P) to our higher-order type theory HT(K ) (with K = (P,K)) is sound.
However, this translation is not conservative. To achieve conservativity, we need to strengthen
the equational theory of the computational lambda calculus, by assuming an additional axiom
for commuting let-bindings (which is derivable in our theory, see Lemma 3.5).
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Definition 6.2 The commutative computational lambda calculus is obtained by adding the
following axiom:

(comm) let x be s in let y be t in u = let y be t in let x be s in u

(As in other axioms, both sides of the axiom must have the same type under the same context,
therefore x cannot be free in t and y cannot be free in s.) ✷

Theorem 6.3 The higher-order type theory HT(K ) is a conservative extension of the com-
mutative computational lambda calculus. ✷

This theorem can be proved syntactically by comparing the normal forms in these cal-
culi. Although there seems to be no simple confluent terminating rewriting system for the
commutative computational λ-calculus, it is possible to define a notion of normal form which
closely resembles Milner’s higher-order molecular forms [Mil94a]. Rather than presenting
this syntactic proof, we give a semantic proof of conservativity by relating the models.

6.2 Comparison with λc-Models

We show the connection between faithful higher-order action models and Moggi’s models
of the computational lambda calculus, called λc-models [Mog88]. This observation relies on
fairly standard category theory, and is a special instance of the results given in [PR97]. To
recall from Moggi’s work, a monad (T, η, µ) satisfies the mono requirement if each component
of η is a monomorphism. A tensorial strength for a monad T on a symmetric monoidal
category is a natural transformation with components θA,B : A ⊗ TB → T (A ⊗ B) subject
to the coherence conditions as found in [Koc70, Mog88, Mog91]. It is commutative if the
evident two natural transformations from TA⊗ TB to T (A⊗B) agree.

Definition 6.4 A λc-model is a cartesian category C with a strong monad (T, η, µ) which
satisfies the mono requirement and has Kleisli exponents: that is, for each object A, the
functor J (A × ) : C → CT has a (chosen) right adjoint A ⇒ ( ), where CT is the Kleisli
category of T and J : C → CT is given by J (f) = f ; η. A λc-model is said to be commutative
if the tensorial strength is commutative. ✷

Proposition 6.5 To give a carrier (C,S,F) such that F is faithful and F( )⊗X has a right
adjoint for each X is to give a commutative λc-model in which cartesian products are strictly
associative. ✷

Sketch of Proof: Given such a carrier (C,S,F), we have a commutative strong monad on C
as the composition of F with its right adjoint, which satisfies the mono requirement and has
Kleisli exponents. Conversely, given a commutative λc-model T over a cartesian category C,
we have a carrier (C, CT ,J ) which satisfies the properties above. Moreover these constructions
are inverse to each other. (See [PR97] for a detailed account.) ✷

Together with the observation in Remark 4.11, we can specify a higher-order action model
as a commutative λc-model with the interpretation of primes and controls.

Theorem 6.6 To give a faithful higher-order action model over the signature K = (P,K)
is to give a commutative λc-model in which products are strictly associative, an object [[p]]P
for each p ∈ P and an arrow

[[K]]K :
∏

i=1,...,r

([[mi]]⇒ [[ni]]) → [[m]]⇒ [[n]]

for each control K with arity rule ((m1, n1), . . . , (mr, nr)) → (m,n) where [[m]] is defined
inductively as in the higher-order action models. ✷
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Our result shows that the models of a static higher-order action calculus correspond
to commutative λc-models, with interpretation functions for the primes and controls. To
interpret the dynamics, we require an additional preorder enrichment of the Kleisli category,
which is not present in Moggi’s work.

Example 6.7 The model of plus (Example 2.4) given in Example 4.6 can be understood as
a commutative λc-model: the corresponding monad is the non-empty powerset monad on
the category of sets and functions. The interpretation [[plus]] is given routinely, again by the
union of relations. The local preorder on the Kleisli category (the category of sets and total
relations) is derived from the subset inclusion on powersets. ✷

This example, used repeatedly in this paper, gives an elementary account of non-determinism.
We can construct more sophisticated models of non-determinism along this line using various
powerdomain monads. (In particular, the connection with models of the π-calculus studied
in [FMS96, Sta96] requires further investigation.)

7 Reflexion and Recursion

Mifsud has observed how recursive computation can be created by combining higher-order and
reflexive features [Mif96]. Later Hasegawa has shown that Mifsud’s construction is possible
in a very general context and formalized a new class of models of recursive computation in
terms of traced monoidal categories [Has97a, Has97b]. Here we review Mifsud’s construction
using our type theory and show how this leads to Hasegawa’s models of recursion.

7.1 Recursion in Higher-Order Reflexive Action Calculi

In functional languages with a fixed-point operator Y , we can define the infinite application
(loop) of a function M as Y (λx.λy.M(xy)) or Y (λx.λy.x(My)). If the language allows
us to use a recursive letrec binding, they can be written as (letrec x be λy.M(xy) in x) and
(letrec x be λy.x(My) in x) respectively. We shall demonstrate these simple forms of iteration
exist in the higher-order reflexive action calculus.

Let a : m → m be an action in the higher-order reflexive action calculus, which is the
direct combination of the higher-order calculus with the reflexive one. In [Mif96] Mifsud
defines actions ITER(a) and BACKITER(a) by

a : m → m x : n ⇒ m x 6∈ fn(a)

ITER(a) ≡ (rec((x)p(〈x〉 ⊗ id) · ap · aq)⊗ id) · ap : n → m

a : m → m x : m ⇒ n x 6∈ fn(a)

BACKITER(a) ≡ (rec((x)p(〈x〉 ⊗ a) · apq)⊗ id) · ap : m → n

where recp(a) is given by

a : p⊗m → p⊗ n

recp(a) ≡↑p (a · (∆p ⊗ idn)) : m → p⊗ n

They satisfy the equations below.

ITER(a) = ITER(a) · a

BACKITER(a) = a · BACKITER(a)
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The direct proof of these equations using the equaltional theory of the higher-order reflexive
action calculi requires some long calculations [Mif96]. However, as we demonstrate below,
they are easily and intuitively verified in our type theory for the higher-order reflexive action
calculi. We present the syntax and axioms of the type theory in Appendix B. Assume that we
have a closed term M : m⇒m of the type theory which satisfies Ψ( ⊢ M) = paq where Ψ(−)
indicates the translation from the type theory to the higher-order reflexive action calculus.
Then we have

ITER(a) = Ψ(~zn ⊢ letrec x be λ~y.M(x~y) in x~z : m)

BACKITER(a) = Ψ(~zm ⊢ letrec x be λ~y.x(M~y) in x~z : n)

For instance, one can prove ITER(a) = ITER(a) · a as follows. In the type theory, we have

letrec x be λ~y.M(x~y) in x~z
= letrec x be λ~y.M(x~y) in (λ(~y).M(x~y))~z
= letrec x be λ~y.M(x~y) in M(x~z)
= M(letrec x be λ~y.M(x~y) in x~z)

hence

ITER(a)
= Ψ(~z : n ⊢ letrec x be λ~y.M(x~y) in x~z : m)
= Ψ(~z : n ⊢ M(letrec x be λ~y.M(x~y) in x~z) : m)
= (Ψ(⊢ M : m⇒m)⊗ Ψ(~z : n ⊢ letrec x be λ~y.M(x~y) in x~z : m)) · ap
= Ψ(~z : n ⊢ letrec x be λ~y.M(x~y) in x~z : m) · a
= ITER(a) · a.

7.2 Recursion and Trace

The observation above suggests that such a construction of fixpoints is always possible in
any models of higher-order reflexive action calculi. Hasegawa has shown fixed point theorems
for such semantic structures. We conclude this section by recalling his results and putting
Mifsud’s observation in this general context.

Theorem 7.1 [Has97a, Has97b] Let F : C−→S be a strict symmetric monoidal functor from
a cartesian category C to a traced symmetric monoidal category S, which is the identity on
objects and has a right adjoint. Then there is a family of functions

(−)†A,X : S(A⊗X,X)−→S(A,X)

such that

1. (−)† is a parametrized dinatural fixed point operator: for f : A ⊗ X−→Y in S and
g : A ⊗ Y−→X in S, ((F(∆A) ⊗ idX); (idA ⊗ f); g)† = F(∆A); (idA ⊗ ((F(∆A) ⊗
idY ); (idA ⊗ g); f)†); g : A−→X .

2. (−)† is natural in A in C; for f : A ⊗ X−→X in S and g : B−→A in C, ((F(g) ⊗
idX); f)† = F(g); f† : B−→X.

Sketch of the proof: (The full calculation is found in [Has97b].) Let us write U : S−→C for
the right adjoint of F , and ǫX : UX−→X in S for the counit. By definition, we have a natural

isomorphism (−)∗ : S(A,B)
∼
−→ C(A,UB). We also define θA,X : A×UX−→U(A⊗X) in C

by θA,X = (idA ⊗ ǫX)∗. Now we define (−)† by

f † = TrUX(F(θA,X ;Uf ; ∆UX)); ǫX : A−→X in S
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for f : A⊗X−→X in S. ✷

In particular this theorem applies to our models of higher-order reflexive action calculi. It
is easy to derive ITER and BACKITER from this formula as special instances. In [Has97a]
Hasegawa studies these categorical structures as a possible framework for recursive compu-
tation, with connection to cyclic lambda calculi.

Example 7.2 We have given a higher-order reflexive action model in Example 4.17. Apply-
ing the theorem, we obtain a fixpoint operator in this setting – explicitly we have a relation
r† : A → X given by

a r† x iff ∃S ⊆ X S = {y | ∃z ∈ S (a, z) r y} & x ∈ S

for a relation r : A×X−→X . ✷

Remark 7.3 Another proof of the theorem is possible using the type theory as an internal
language. In the type theory this fixpoint construction amounts to

Γ, ~xm ⊢ t : m

Γ ⊢ letrec f ǫ⇒m be λ.((λ~x.t)(f0)) in f0 : m

and the properties stated in the theorem are derived using the axioms of the type theory, in
the same manner as the calculation for ITER. ✷

On the other hand, a more specialized theorem on traced cartesian categories in [Has97a],
proved independently by Hyland, states that trace and fixpoints are more or less equivalent
in cartesian categories. For instance any models of domain theory are shown to be traced, in
most cases trace is given by the least fixed point operators.

As a conceptual consequence, we see that recursion described in terms of traced categories
is strictly more general than the traditional one. In particular the recursive computation in
higher-order reflexive action calculi does not have to fit in the traditional models of recursion.
The same seems to be also true for recursion created from cyclic graph rewriting system. We
think that this opens up a new research direction which leads to a deeper understanding of
recursive computation – see [BCS98] for a recent development in this direction.

8 Conclusions and Related Work

In this paper we have given the type theories for action calculi and their higher-order and
reflexive extensions, and the categorical models of the extensions based on Power’s models
of action calculi. We have presented a semantic proof of the conservativity of (static) higher-
order action calculi over action calculi, and have related our higher-order models with Moggi’s
λc-models. We also analysed recursive computation in higher-order reflexive action calculi,
using the type-theoretic and categorical presentations given here.

Our results form part of a broader picture. First, there is work by Barber, Gardner,
Hasegawa and Plotkin [BGHP96, BGHP98], which links action calculi with intuitionistic
linear type theory [BP98, Ben95], and proves conservativity results for various extensions of
action calculi incorporating the results given here. This work focusses more extensively on
relating type theories by comparing their categorical models. (See also [BW96] for a related
work on linear type theory and notions of computation.)

Another perspective is the connection with graph rewriting systems. The above mentioned
work connecting action calculi and linear logic [BGHP98] should lead to an integration of
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techniques for reasoning about the graphical presentation of actions (action graphs [Mil96]),
proof nets and interaction nets. Hasegawa’s thesis [Has97b] studies the category theoretic
framework in this paper more extensively as the semantic models of term graphs arising from
graph rewriting theory. Independently, similar models of term graphs called gs-monoidal
categories have been proposed by Corradini and Gadducci [CG97]; Miyoshi has adapted
Hasegawa’s work for gs-monoidal categories and rewriting logic [Miy98]. It is easy to see
that their models are very close to the action models, expect that they use Cat-enrichment
for modelling rewriting whereas we use preorder-enrichment for dynamics. Action calculi fit
well within the general theory of graph rewriting systems, and we believe that this direction
should lead to a fruitful interaction between graph rewriting theory and concurrency theory.

Finally, whilst in this paper symmetric monoidal categories are sufficient for describing
models of action calculi, Power and Robinson focus on premonoidal categories [PR97] for
expressing computational behaviour, in which the tensor product need not be bifunctorial.
They argue that this weaker structure is more natural for describing computational behaviour
such as imperative features. Recently Jeffrey introduced a graphical view of imperative
programs along this line [Jef98]. In essence, Jeffrey (and implicitly Power and Robinson)
emphasises the notion of a control line through the graphs to specify the causal order of
programs. This causal information can be expressed using the controls of action calculi, and
further work is required to fully understand the comparisons between these approaches.
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A Graphical Presentation of Axioms for Trace

We present the graphical version of the axioms for traced symmetric monoidal categories, to
help with the intuition of traced categories as categories with cycles (or feedback, reflexion).
Such graphical languages for various monoidal categories have been developed in [JS91]. For
an arrow f : A1 ⊗ . . .⊗Am → B1 ⊗ . . .⊗Bn we draw a graph with m inputs and n outputs
as

PSfrag replacements
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B1

Bn

:: f

In particular the trace operator is nicely presented as an operator creating a cyclic binding:

PSfrag replacements
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Using this notation, the axioms for trace are given as follows.

PSfrag replacements

Vanishing

Superposing
Yanking

==

= =

Note that naturality of a trace can be axiomatized as follows.

• Naturality in A (Left Tightening)

TrXA,B((g ⊗ idX); f) = g;TrXA′,B(f) : A−→B

where f : A′ ⊗X−→B ⊗X, g : A−→A′

• Naturality in B (Right Tightening)

TrXA,B(f ; (g ⊗ idX)) = TrXA,B′(f); g : A−→B

where f : A⊗X−→B′ ⊗X , g : B′−→B

• Naturality in X (Sliding)

TrXA,B(f ; (idB ⊗ g)) = TrX
′

A,B((idA ⊗ g); f) : A−→B

where f : A⊗X−→B ⊗X′, g : X ′−→X
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PSfrag replacements
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Remark A.1 The axiom Superposing is slightly simplified from the original version in
[JSV96]

TrXA⊗C,B⊗D((idA ⊗ cC,X); (f ⊗ g); (idB ⊗ cX,D)) = TrXA,B(f)⊗ g

where f : A ⊗ X−→B ⊗ X, g : C−→D. Assuming natulality in A and B (Left & Right

Tightenings), ours is derivable from this original one, and vice versa. ✷

Example A.2 Using the graphical presentation, the semantic interpretation of the letrec
binding in Definition 4.15 is given as

PSfrag replacements

[[m]]

[[n]]
[[Γ]]

[[Γ, ~xm ⊢ s : m]]

[[Γ, ~xm ⊢ t : n]]

where the diagonal F(∆) is presented as a branching. ✷

B Higher-Order Reflexive Theory

The syntax and axiomatization of the type theory for higher-order action calculi is just the
combination of the higher-order type theory with the reflexive theory. All definitions are
summarised as below.

Definition B.1 The set of type-theoretic terms (usually just called terms) over K is defined
by the following grammar:

t ::= x | 0 | tt | t⊗ t | λ~x.t | letrec ~x be t in t | K((~x)t, . . . , (~x)t; t)

where we assume the strict associativity (see Definition 3.1). Also we define values by

v ::= x | 0 | v ⊗ v | λ~x.t

✷
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Definition B.2 A term is well-typed if it can be shown to annotate a sequent using the
following rules.

Γ, xp ⊢ x : p Γ ⊢ 0 : ǫ
Γ ⊢ s : m Γ ⊢ t : n
Γ ⊢ s⊗ t : m⊗ n

Γ, ~xm ⊢ s : m Γ, ~xm ⊢ t : n

Γ ⊢ letrec ~x be s in t : n

Γ, ~xm ⊢ t : n

Γ ⊢ λ~x.t : m⇒n
Γ ⊢ s : m⇒n Γ ⊢ t : m

Γ ⊢ st : n

Γ, ~xmi

i ⊢ si : ni (1 ≤ i ≤ r) Γ ⊢ t : m

Γ ⊢ K((~x1)s1, . . . , (~xr)sr; t) : n

Γ, xp, yq,Γ′ ⊢ t : m

Γ, yq, xp,Γ′ ⊢ t : m

where, in the derivation of K(. . .), K has arity rule ((m1, n1), . . . , (mr, nr)) → (m,n). ✷

Definition B.3 The equality judgement Γ ⊢ s = t : n, where Γ ⊢ s : n and Γ ⊢ t : n,
is defined as a congruence relation on well-typed terms of the same arity under the same
context generated from the following axioms.

letrec ~x be t in ~x = t
letrec ~x be (letrec ~y be s in t) in u = letrec ~x, ~y be t⊗ s in u
letrec ~x be s in letrec ~y be t in u = letrec ~x, ~y be s⊗ t in u
s⊗ (letrec ~x be t in u) = letrec ~x be t in s⊗ u
(letrec ~x be s in t)⊗ u = letrec ~x be s in t⊗ u
letrec ~x, ~y, ~z be s1 ⊗ s2 ⊗ s3 in t = letrec ~y, ~x, ~z be s2 ⊗ s1 ⊗ s3 in t
K((~x1)t1, . . . , (~xr)tr; letrec ~x be s in t) = letrec ~x be s in K((~x1)t1, . . . , (~xr)tr; t)

(λ~x.s)t = letrec ~x be s in t
λ~x.y~x = y
(letrec ~x be s in t)u = letrec ~x be s in tu
s(letrec ~x be t in u) = letrec ~x be t in su

letrec x, ~y be v ⊗ s in t = letrec x, ~y be v ⊗ (s{v/x}) in t{v/x}
letrec x be v in s = s (x 6∈ fv(s) ∪ fv(v))

✷


