
Caper

Automatic Verification with Concurrent Abstract Predicates
Technical Appendix: Program Logic

Thomas Dinsdale-Young
Aarhus University, Denmark

tyoung@cs.au.dk

Pedro da Rocha Pinto
Imperial College London, UK

pmd09@doc.ic.ac.uk

Kristoffer Just Andersen
Aarhus University, Denmark

kja@cs.au.dk

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Contents

1 Introduction 2

2 Syntax Summary 2
2.1 Object Language . 2
2.2 Specification Language . 3
2.3 Spin Lock Example . 3

3 Syntax of Object Language 4

4 Operational Semantics 5

5 Assertion Logic 10
5.1 Entailment Logic . 13

6 Specification Logic 13
6.1 Specification Syntax . 13
6.2 Specification Rules . 16

6.2.1 Program Specification . 16
6.2.2 Function Specification . 16
6.2.3 Statement Specification . 17
6.2.4 Atomic Statement Specifications . 18

7 Model 18

8 Interpretation 20
8.1 Interpretation of Specifications . 23

9 Soundness 28
9.1 Soundness of Specification Logic . 28

9.1.1 Soundness of Statement Specifications . 28
9.1.2 Soundness of Atomic Statement Specifications . 41
9.1.3 Soundness of Program Specifications . 44

1

tyoung@cs.au.dk
pmd09@doc.ic.ac.uk
kja@cs.au.dk
birkedal@cs.au.dk

1 Introduction

This document contains a formal development of the program logic on which the Caper tool for
automatic verification of fine-grained concurrent programs is built.

The document is structured as follows: Sections 2 and 2.3 gives an overview of how the concrete
syntax used in Caper source files translate to the abstract syntax of the program logic used in the
formal development. The abstract syntax and the operational semantics are detailed in Sections 3
and 4. The assertion logic to 6. The semantics of the program logic are developed in 3 stages. Section 7
details the semantic model that the interpretation of Section 8 translates the abstract syntax into. This
translation is finally proven sound in Section 9.

Here could go some of the points why this document is long and complicated.
The object language features a few things that are non-standard in the sense of a core, imperative

calculus for developing program logics. Really, only the heap commands and basic control flow
constructs are important.

But, as a tool for automating verification of programs, it is reasonable to push the object language
closer to “the real thing”: modern imperative programming languages and hence the algorithms
designed for them make use of local variables and local returns to structure and organize code.

The way that ownership of capabilities is modeled is different from the literature. E.g. Iris is
essentially a framework parameterized by choice of a partial commutative monoid that, for a given
program or problem can be instantiated “large enough” to model the relationships between capability
resources that is desired.

The model of Caper makes a different choice based on two ideas: by not having a parameterized
framework of a model, but instead a “large enough” model once and for all, we achieve true modu-
larity of verification. Morally, if two modules are proven correct using Iris, but on two different sets of
assumptions, they are not directly composable. This is avoided in Caper.

In addition we have the issue of automation and implementability (and two a lesser extent usabil-
ity). Products, sums, parameters and permissions give an expressive and convenient vocabulary for
expressing many protocols on shared state.

Immediately, the combinators provided do not allow for higher order monoid expressions like Iris.

2 Syntax Summary

In this section we give a brief overview of how the concrete syntax of Caper corresponds to the abstract
syntax of the program logic.

2.1 Object Language

The object language is a core imperative language with first-order dynamically allocated heap storage
in addition to mutable local variables and multiple return points. The latter two features sets Caper

apart from standard core imperative languages used in the literature, but is more representative of
modern imperative languages.

s ∈ Stmt ::= s1;s2 sequencing
| if(e) then {s1} else {s2} conditional branch
| while(e){s} zero-or-more iteration
| x := e local assignment
| x := alloc(e) allocation
| x := CAS(e1,e2,e3) compare-and-swap
| [e1] := e2 heap write
| x := [e] heap read
| x := f(~e) function call
| return e value return
| fork f(~e) spawn thread
| skip no-op

2

FunDef ::= function f(~x){s} Program ::= FunDef∗; function main(){s}

2.2 Specification Language

The assertion language is a standard, first-order intuitionistic separation logic extended with resources
representing knowledge and ownership of shared state and permissions to update that state. Shared
state is modeled by “regions”, and permissions to manipulate the state is expressed through “guards”.
A region declaration consists of a guard algebra declaration (GAD), a region interpretation declaration
(ID)and an action declaration (AD). The guard algebra describes which permissions can be owned
for a particular region, and how those permissions may be shared, split and combined. The region
interpretation describes by way of a “state variable” the configuration of the heap owned by the region.
The action interpretation describes the protocol governing the shared state by assigning legal updates
to the state variable to guards.

The P in the grammar ranges over assertions in first-order separation logic extended with guard
and region assertions as detailed later in this appendix.

GAD g ::= G Indivisible Guard
| %G Divisible Guard
| #G Parameterized Guard
| g ∗ g Product Construction
| g + g Sum Construction
| 0 Nil Guard

ID i ::= ·
| i, (∆).Π | e : P

AD a ::= ·
| a, (∆).Π | G : e1 e2

Well-specified programs and individual functions are specified with respect to a region declaration
context:

RegionContext R ::= • | R, T(r,~x)(g, i, a)

The variable r binds the name of the region itself (think this from mainstream OO programming
languages) and the variables ~x bind the names of the resources held by the region. These names are
bound in the region interpretation and action declaration.

Well-specified programs are also specified with respect to a function specification context, assigning
pre- and postconditions to function names, expressed as assertions ranging over the parameters of the
function and its return value.

SpecCtxt Φ ::= • | Φ, f : (Γ,~x){P}{r.Q}

Individual functions and fragments of code are verified “Hoare style”, demonstrating that pro-
grams run from states satisfying a precondition P either run to completion, reaching a state satisfying
Q, or return locally a value satisfying U:

R; Φ; Γ ` {P} s {Q | r.U}

There is no surface syntax for this judgment as constructing them is precisely the function of Caper.

2.3 Spin Lock Example

In order to demonstrate the specification syntax of Caper we here describe a fully verified program,
relating it to the surface syntax in the process. The example involves a simple spin-lock, for simplicity,
but it will exercise most all the features of the program logic.

First, the surface syntax of the region declarations for the spin-lock:

region SLock(r,x) {

guards %LOCK * UNLOCK;

interpretation {

0 : x |-> 0 &*& r@UNLOCK;

1 : x |-> 1;

3

}

actions {

LOCK[_] : 0 ~> 1;

UNLOCK : 1 ~> 0;

}

}

The set of primitive guards is {LOCK, UNLOCK}, and the guard algebra declaration, call it GSL,
%LOCK ∗ UNLOCK, describing that the LOCK resource is divisible, while the UNLOCK resource is not.

The region interpretation, ISL, is described by two clauses, in abstract syntax written as

(·).> | 0 : x 7→ 0 ∗ r@UNLOCK,
(·).> | 1 : x 7→ 1

The (·) is an empty context of local variables, as only x and r occur in the clauses, and > is the trivial
condition on the clause. Hence, the only requirement of applicability for the clauses is that the state
of the region is equal to 0 or 1, modeling locked or unlocked, respectively.

The action declarations describes a simple state transition system, where wielding the LOCK re-
source (with any degree of permission) allows a state transition from 0 to 1; vice versa for UNLOCK. The
abstract syntax is as follows:

(·).> | LOCK[_] : 0 1
(·).> | UNLOCK : 1 0

Hence, the region declaration context for this example consists of the single SLock declaration:

R := SLock(r, x)(GSL, ISL, ASL)

The concrete syntax for the unlock implementation is as follows:

function unlock(x)

requires SLock(r,x,1) &*& r@UNLOCK;

ensures SLock(r,x,_); {

[x] := 0;

}

This represents the function specification written as follows:

unlock : (r : Region, x : Val){SLock(r, x, 1) ∗ r@UNLOCK}{ret.∃s.SLock(r, x, s)}

3 Syntax of Object Language

Convention 1 (Sets). Sets are typeset with capitalized italicized font when there is no canonical name,
e.g. Type, Heap but N and Z.

Convention 2 (Sets of Syntax). We typeset sets of syntax with capitalized teletype, e.g. Fun.

Definition 3 (Var, Variable Names). We suppose a set Var ranged over by x, y etc.

Definition 4 (Fun, Function Names). We suppose a set Fun, ranged over by f, g etc.

Definition 5 (Expr, Syntactic Expressions). We define Expr as arithmetic and boolean expressions over
integer literals and variables drawn from Var. We let e range over syntactic expressions.

4

e ∈ Expr ::= x variables
| n constants
| e+ e arithmetic operations
| e− e

| e ∗ e
| e/e
| e = e integer comparisons
| e 6= e

| e < e

| e ≤ e

| e ≥ e

| e > e

Convention 6 (Finite Sequences). We use the notation Foo∗ as the set of finite sequences with elements
drawn from Foo. Individual sequences are denoted ~e ∈ Foo∗ where each ei ∈ Foo is an elements of the
indicated type. We use |~e| as notation for the length of ~e.

We implicitly lift operations on the underlying set to sequences on that set pointwise.

Definition 7 (Stmt, Syntactic Statements). The set of statements of the object language is generated by
the following BNF:

s ∈ Stmt ::= s1;s2 sequencing
| if(e) then {s1} else {s2} conditional branch
| while(e){s} zero-or-more iteration
| x := e local assignment
| x := alloc(e) allocation
| x := CAS(e1,e2,e3) compare-and-swap
| [e1] := e2 heap write
| x := [e] heap read
| x := f(~e) function call
| return e value return
| fork f(~e) spawn thread
| skip no-op

Definition 8 (FunDef, Syntactic Function Definitions). We define FunDef by the following grammar:

FunDef ::= function f(~x){s}

Definition 9 (Program, Caper Programs). The set of syntactic Caper Programs is defined as the set of
sequences of function definitions with a designated main function as the entry point, i.e.

Program := FunDef∗; function main(){s}

4 Operational Semantics

Definition 10 (Addr, Machine Addresses).

n ∈ Addr := N

Definition 11 (Val, Program Values).

n ∈ Val := Z

Note that Addr ⊆ Val. We can distinguish valid addresses in our meta-mathematics simply by consid-
ering n ∈ Addr versus n 6∈ Addr.

Definition 12 (Heap, Global Machine Memory).

h ∈ Heap := Addr fin
⇀ Val

5

Heaps form a partial commutative monoid with the empty heap, written ∅ as unit and disjoint
union as composition, defined as follows:

h1] h2 =

⊥ dom(h1) ∩ dom(h2) 6= ∅λa.

h1(a) a ∈ dom(h1)

h2(a) a ∈ dom(h2)

⊥ otherwise

 otherwise

As always, a partial commutative monoid is partially ordered by the canonical extension order:

h1 v h2
def⇐⇒ ∃h3. h1] h3 = h2

Observe that v is both

1. reflexive, as ∅] h = h]∅ = h for all h;

2. transitive, as if we have heaps to extend h1 to h2 and h2 to h3, the composition of the two pieces
will extend h1 to h3, since] is associative;

3. anti-symmetric, as having heaps to extend h1 to h2 and vice versa implies that the pieces are
empty, hence h1 = h2. That is, if h1 · h′1 = h2 and h2 · h′2 = h1 it means that (h2 · h′2) · h′1 = h2. If
h2 · (h′2 · h′1) = h2 then it must be that h′2 · h′1 = ∅, meaning so must both of h′2 and h′1.

Definition 13 (Stack, Thread Local Stack).

σ ∈ Stack := Var→ Val

We silently lift the action of stacks on variables to sequences of variables when the intention is clear,
e.g. σ(~x) = σ(x1), σ(x2)..., σ(xn) for a sequence ~x of length n.

Definition 14 (Cont, Continuations). We define the set of continuations by the following grammar,
where σ ∈ Stack, s ∈ Stmt and x ∈ Var:

κ ∈ Cont ::= s | x:=(σ, κ)

We use the second construction to represent the frames of the call stack.

Definition 15 (ThreadId, Thread Identifiers). We suppose a set ThreadId of thread identifiers, ranged
over by id.

Definition 16 (Thread, Threads).

t ∈ Thread := Stack× Cont

Definition 17 (ThreadPool, Thread pools).

T ∈ ThreadPool := ThreadId fin
⇀ Thread

Definition 18 (Program, Machine Configurations). We enrich machine configurations with a distin-
guished faulting state denoted :

Program := (Heap] { })× ThreadPool

Definition 19 (Env, Function Environments). Function environments are partial mappings from func-
tion names to parameters and bodies. The set of function environments are generated by the following
grammar, where f ∈ Fun,~x ∈ Var∗ and s ∈ Stmt:

E ∈ Env ::= · | E, f : (~x, s)

where f does not appear in the E it extends. An environment E induces a partial map

Fun
fin
⇀ (Var∗, Stmt)

and we denote a well-defined lookup as E(f) = (~x, s).

6

Definition 20 (J−K−, Expression Evaluation). We define a total interpretation of expressions with
regards to a stack as follows:

J−K− : Expr× Stack→ Val

JxKσ = σ(x)

Je1 + e2Kσ = Je1Kσ + Je2Kσ

Je1/e2Kσ =

{
Je1Kσ / Je2Kσ if Je2Kσ 6= 0
0 otherwise

Je1 ≤ e2Kσ =

{
1 if Je1Kσ ≤ Je2Kσ

0 otherwise

We omit the remaining, straightforward cases.
Notice that uninitialized variables are not handled exceptionally as the stack is a total function.

Intuitively, referencing uninitialized local variables returns an arbitrary but consistent value - multiple
accesses of the same variables returns the same value.

We present the operational semantics as a Views-style labelled transition system, with a label
interpretation providing the semantics of atomic actions: heap operations and faulting.

Definition 21 (Action, Atomic Action Labels). The set of atomic action labels is described by the
following grammar, where n ranges over Addr and v ranges over Val.

α ∈ Action ::= id

|
| alloc(n, v)
| read(n, v)
| write(n, v)
| CAS(n, v, v, v)

Convention 22 (− 7→ −, Map Extension). We denote the extension of maps by the usual m[k 7→ v]
notation, and lift it to sequences of matching lengths, using m[~k 7→ ~v] to stand for m[k1 7→ v1]...[kn 7→
vn], with circumstances ensuring matching lengths.

Definition 23 (J−K, Atomic Action Interpretation). We interpret atomic action labels as functions from
atomic action labels to heaps or a designated faulting element .

J−K : Action→ Heap→ P(Heap] { })

7

JidK (h) = {h}
J K (h) = { }

Jread(x, v)K (h) =

{h} if x ∈ dom(h) and h(x) = v
∅ if x ∈ dom(h) and h(x) 6= v
{ } if x 6∈ dom(h)

Jwrite(x, v)K (h) =

{
{h[x 7→ v]} if x ∈ dom(h)
{ } otherwise

q
CAS(x, v, v′, b)

y
(h) =

{h[x 7→ v′]} if x ∈ dom(h), h(x) = v and b 6= 0
{h} if x ∈ dom(h), h(x) 6= v and b = 0
∅ if x ∈ dom(h) and h(x) = v but b = 0, or

h(x) 6= v and b 6= 0
{ } if x 6∈ dom(h)

Jalloc(v, n)K (h) =

{h[n 7→ _]...[n + (v− 1) 7→ _]} if n, ..., n + (v− 1) 6∈ dom(h)
and v > 0

∅ if n or n + 1 or ... or n + (v− 1)
∈ dom(h) and v > 0

{ } if v < 1

We lift a function
JαK : Heap→ P(Heap] { })

to
(Heap] { })→ P(Heap] { })

by letting JαK () = { }.

Definition 24 (− ` − −−→ −, Thread Semantics). We define the semantics of individual threads as
a labelled transition relation, with the set of labels consisting of atomic action labels extended by a
designated fork(f,~v) label; letting

Label := Action + {fork(f,~v) | f ∈ Fun,~v ∈ Val∗}

we define the relation

− ` − −−→ − ⊂ Env× Thread× Label× Thread

8

Seq

E ` (σ, s1)
α−→ (σ′, s′1)

E ` (σ, s1;s2)
α−→ (σ′, s′1;s2)

Skip

E ` (σ, skip;s) id−→ (σ, s)

IfTrue

JeKσ 6= 0

E ` (σ, if(e) then {s1} else {s2})
id−→ (σ, s1)

IfFalse

JeKσ = 0

E ` (σ, if(e) then {s1} else {s2})
id−→ (σ, s2)

WhileTrue

JeKσ 6= 0

E ` (σ, while(e){s}) id−→ (σ, s;while(e){s})

WhileFalse

JeKσ = 0

E ` (σ, while(e){s}) id−→ (σ, skip)

FunctionCall

E(f) = (~x, s) σ′(~x) = J~eKσ

E ` (σ, x:=f(~e))
id−→ (σ, x:=(σ′, s))

FunctionCallStep

E ` κ
α−→ κ′

E ` (σ, x:=κ)
α−→ (σ, x:=κ′)

LocalReturn

E ` (σ, x:=(σ′, return e;s)) id−→ (σ[x 7→ JeKσ′], skip)

Return

E ` (σ, x:=(σ′, return e))
id−→ (σ[x 7→ JeKσ′], skip)

DefaultReturn

E ` (σ, x:=(σ′, skip)) id−→ (σ[x 7→ v], skip)

LocalAssign

E ` (σ, x := e)
id−→ (σ[x 7→ JeKσ], skip)

Fork

E ` (σ, fork f(~e))
fork(f,J~eKσ)−−−−−−−→ (σ, skip)

AtomicWrite

Je1Kσ = n n ∈ Addr

E ` (σ, [e1] := e2)
write(n,Je2Kσ)−−−−−−−−→ (σ, skip)

AtomicWriteFault

Je1Kσ 6∈ Addr

E ` (σ, [e1] := e2)
 −→ (σ, skip)

AtomicRead

JeKσ = n n ∈ Addr

E ` (σ, x := [e])
read(n,v)−−−−−→ (σ[x 7→ v], skip)

AtomicReadFault

JeKσ 6∈ Addr

E ` (σ, [x] := e)
 −→ (σ, skip)

CAS
Je1Kσ = n n ∈ Addr

E ` (σ, x := CAS(e1,e2,e3))
CAS(n,Je2Kσ ,Je3Kσ ,b)
−−−−−−−−−−−→ (σ[x 7→ b], skip)

CASFault

Je1Kσ 6∈ Addr

E ` (σ, x := CAS(e1,e2,e3))
 −→ (σ, skip)

Alloc

JeKσ = n 1 ≤ n

E ` (σ, x := alloc(e))
alloc(n,v)−−−−−−→ (σ[x 7→ v], skip)

AllocFault

JeKσ < 1

E ` (σ, x := alloc(e))
 −→ (σ, skip)

Lemma 25 (Determinism of Thread Semantics). For any thread (σ, s), if E ` (σ, s) α−→ (σ1, s1) and

E ` (σ, s) α′−→ (σ2, s2) then s1 = s2.

9

Definition 26 (− ` − −−→ −, Threadpool Semantics). We define the operational semantics of a thread
pool as a atomic action labelled transition relation.

− ` − −−→ − ⊆ Env× ThreadPool×Action× ThreadPool

E ` t
fork(f,~v)−−−−−→ t′ E(f) = (~x, s) σ(~x) = ~v

E ` T || t id−→ T || t′ || (σ, s)

E ` t α−→ t′ α ∈ Action

E ` T || t α−→ T || t′

Definition 27 (− ` − −−→ −, Program Semantics). We define the operational semantics of programs as
a single step transition relation

− ` − −→ − ⊆ Env× Program× Program

E ` T α−→ T′ h′ ∈ JαK (h)
E ` (h, T) −→ (h′, T′)

5 Assertion Logic

Definition 28 (Type, Logical Types). We define a set of primitive types over which we will allow
quantification:

Type τ ::= Val | Perm | Region

Definition 29 (LVar, Logical Variables). We suppose a set LVar ranged over by x, y etc.

Definition 30 (Context, Logical Contexts). Well-formed logical contexts binds logical variables to
primitive types:

Γ ::= · | Γ, x : τ

where x does not occur in the Γ it extends. A context Γ induces a partial map from variables to types,
and we denote a defined look-up by Γ(x) = τ.

Definition 31 (RegionTypeName, Region Type Names). We suppose a set of region type names ranged
over by T.

Definition 32 (RegionType, Region Types). We define the set of region types as parameterized region
type names, according to the following definition:

RegionType := {T(r,~x : ~τ) | r ∈ LVar,~x ∈ LVar∗,~τ ∈ Type∗}

Definition 33 (PrimitiveGuard, Primitive Guard Symbols). We suppose an infinite set of primitive guard
symbols, usually ranged over by G.

Definition 34 (Term, Assertion Logic Terms). We define the syntax of assertions with the following
grammar. The types τ described in the grammar are simple types over which we allow quantification;
this is not a higher-order logic.

10

M, N, O ∈ Term ::= x logical variables
| > | ⊥ | M ∧ N | M ∨ N propositional formulae
| M⇒ N | ¬N
| M ? N : O conditionals
| ∀x : τ.M | ∃x : τ.M quantification
| M =τ N primitive equality
| M ∗ N | emp separating conjunction
| M 7→ N | M 7→ [N] points-to assertions
| M@(N) | T(M, N, O) region assertions
| G | G[M] | G(M) guard resources
| 0p | 1p |∼ M | M · N permission expressions
| compatible(M, N)
| x | n | M + N program expressions
| M− N | M ∗ N | M/N
| M ≤ N | M < N
| M ≥ N | M > N
| ε | M, N list expressions

Definition 35 (− ` − : Val, Program Value Expressions). Program value expressions precisely reflect
arithmetic expressions and comparisons as per the object language. We do not distinguish between
expressions in the assertion logic and expressions in programs; the only difference is that assertions
additionally allow for logical variables.

Well-typed program value expressions are given by the following rules:

− ` − : Val ⊆ Context× Term

Γ(x) = Val

Γ ` x : Val Γ ` x : Val Γ ` n : Val

Γ ` M : Val Γ ` N : Val op ∈ {+,−, ∗, /}
Γ ` M op N : Val

Γ ` M : Val Γ ` N : Val comp ∈ {<,≤,≥,>}
Γ ` M comp N : Val

Definition 36 (− ` − : Perm, Permission Assertions). Well-typed permission expression are given by
the following rules:

− ` − : Perm ⊆ Context× Term

Γ(x) = Perm

Γ ` x : Perm Γ ` 0p : Perm Γ ` 1p : Perm
Γ ` M : Perm

Γ `∼ M : Perm

Γ ` M : Perm Γ ` N : Perm
Γ ` M · N : Perm

Definition 37 (− ` − : Pure, Pure Assertions). Well-typed pure assertions are given by the following
rules. They are “pure” in that they do not contain spatial or region assertions.

− ` − : Pure ⊆ Context× Term

11

Γ ` ⊥ : Pure Γ ` > : Pure
Γ ` M : Pure Γ ` N : Pure

Γ ` M ∧ N : Pure

Γ ` M : Pure Γ ` N : Pure
Γ ` M ∨ N : Pure

Γ ` M : Pure Γ ` N : Pure
Γ ` M⇒ N : Pure

Γ ` M : Pure
Γ ` ¬M : Pure

Γ ` M : τ Γ ` N : τ

Γ ` M =τ N : Pure
Γ, x : τ ` M : Pure
Γ ` ∀x : τ.M : Pure

Γ, x : τ ` M : Pure
Γ ` ∃x : τ.M : Pure

Γ ` M : Perm Γ ` N : Perm
Γ ` compatible(M, N) : Pure

Definition 38 (− ` − : Guard, Guard Expressions). Well-typed guard expressions are given by the
following rules, wherein G ranges over the set of primitive guards:

− ` − : Guard ⊆ Context× Term

Γ ` G : Guard
Γ ` M : Perm

Γ ` G[M] : Guard
Γ ` M : Val

Γ ` G(M) : Guard
Γ ` M : Guard Γ ` N : Guard

Γ ` M ∗ N : Guard

Definition 39 (− ` − : Region, Region Identifiers).

− ` − : Region ⊆ Context× Term

Γ(x) = Region

Γ ` x : Region

Definition 40 (−;− ` − : Assn, Assertions). Well-typed assertions are given by the following rules.

−;− ` − : Assn ⊆ P(RegionType)× Context× Term

Γ ` M : Pure
R; Γ ` M : Assn

Γ ` M : Pure R; Γ ` N : Assn dom(R); Γ ` O : Assn
R; Γ ` M ? N : O : Assn

R; Γ ` M : Assn R; Γ ` N : Assn
R; Γ ` M ∗ N : Assn

Γ ` M : Val Γ ` N : Val
R; Γ ` M 7→ N : Assn

Γ ` M : Val Γ ` N : Val
R; Γ ` M 7→ [N] : Assn R; Γ ` emp : Assn

Γ ` x : Region Γ ` M : Guard
R; Γ ` x@(M) : Assn

T(r,~x : ~τ) ∈ R
Γ ` x : Region | ~M| = |~τ| Γ ` Mi : τi Γ ` N : Val

R; Γ ` T(x, ~M, N) : Assn

Assertions also contain the usual first order logic connectives:

R; Γ ` M : Assn R; Γ ` N : Assn op ∈ {∨,∧,⇒}
R; Γ ` M op N : Assn

R; Γ, x : τ ` M : Assn quan ∈ {∀, ∃}
R; Γ ` quan x.M : Assn

c ∈ {>,⊥}
R; Γ ` c : Assn

Γ ` M : τ Γ ` N : τ

R; Γ ` M =τ N : Assn

R; Γ ` M : Assn
R; Γ ` ¬M : Assn

12

5.1 Entailment Logic

Definition 41 (Syntactic Entailment of Assertions). We define syntactic entailment on those as a rela-
tion:

−;− | − ` − ⊆ P(RegionType)× Context×P(Assn)× Assn

An entailment R; Γ | P1, ..., Pn ` Q is well-formed when

R; Γ ` Pi : Assn R; Γ ` Q : Assn

The rules of the entailment logic are a standard first-order intuitionistic separation logic.

6 Specification Logic

6.1 Specification Syntax

Definition 42 (GAD, Guard Algebra Declaration). A guard algebra declaration is an expression from
the following grammar of guard algebra combinators, where G ranges over primitive guard symbols:

GAD g ::= G Indivisible Guard
| %G Divisible Guard
| #G Parameterized Guard
| g ∗ g Product Construction
| g + g Sum Construction
| 0 Nil Guard

A guard algebra declaration is well-formed when a primitive guard symbol G occurs at most once in
the declaration.

Definition 43 (ID, Region Interpretation Declaration). Region interpretations are a collection of clauses
of the form

(∆).Π | e : P

where ∆ is a logical context and Π, e and P are terms of the assertion logic.
A single clause is well-formed with respect to a set of region types R, variable r and variables ~x of

types ~τ if

• r : Region,~x : ~τ, ∆ ` Π : Pure

• r : Region,~x : ~τ, ∆ ` e : Val

• R; r : Region,~x : ~τ, ∆ ` P : Assn

A whole region interpretation declaration is well-formed with respect to a region declaration con-
text R, identifier r and variables ~x of types ~τ when, in addition to each clause being well-formed,

Definition 44 (AD, Region Action Declaration). A region action declaration is a collection of clauses
of the form

(∆).Π | G : e1 e2

where ∆ is a logical context, P, G, e1 and e2 are terms in the assertion logic.
A single clause is well-formed with repsect to a variable r and variables ~x of types ~τ when

• r : Region,~x : ~τ, ∆ ` Π : Pure

• r : Region,~x : ~τ, ∆ ` G : Guard

• r : Region,~x : ~τ, ∆ ` e1 : Val

• r : Region,~x : ~τ, ∆ ` e2 : Val

13

Definition 45 (RegionDecl, Region Declarations). A region declaration is a triple of a guard algebra
declaration, a region interpretation declaration and a region action declaration:

RegionDecl := {(g, i, a) | g ∈ GAD, i ∈ ID, a ∈ AD}

A region declaration (g, i, a) is well-formed with respect to a collection of region types R, logical
variable r and logical variables ~x of types ~τ when:

• g is a well-formed guard algebra declaration

• i is a well-formed region interpretation declaration with respect to R, r and ~x : ~τ

• a is a well-formed action declaration with respect to r and ~x : ~τ

Definition 46 (RegionContext, Region Contexts). A region declaration contexts is defined by the fol-
lowing grammar

R ::= · | R, T(r,~x : ~τ)(g, i, a)

We denote the set of region types associated in the region context R as dom(R).
A region context R is well-formed when each individual region declaration (g, i, a) is well-formed

with respect to the associated region type parameters r, ~x and ~τ, and the collection of all the region
types dom(R), and each region type is associated at most once.

These conditions are enough for a well-formed region context to induce a partial mapping from
region types to well-formed region declarations, and we denote a well-defined lookup as follows:

R(T(r,~x : ~τ)) = (g, i, a)

Definition 47 (I(−), Interpretation Function). A well-formed region context induces a function on
well-typed region assertions to spatial assertions, intuitively computing the “symbolic” interpretation
of a region assertion. The region context in question will be clear from context.

For a region context R and a well-formed region assertion

dom(R); Γ ` T(x, ~M, N) : Assn

we define the interpretation as follows: Let T(r,~x : ~τ) be the associated region type in R. Then, for
each clause in the region interpretation, say

(∆).Π | e : P

We can build the assertion

dom(R); Γ ` (∃∆.Π ∧ N = e ∧ P)[x, ~M/r,~x] : Assn

where we close the assertions in the clause by the concrete parameters at hand, and the local context
is closed existentially. Then, the interpretation is the disjunction of all such clauses:

I(T(x, ~M, N)) =
∨

(∆).Π|e:P

(∃∆.Π ∧ N = e ∧ P)[x, ~M/r,~x]

Definition 48 (SpecCtxt, Function Specification Context). Function specification contexts assign spec-
ifications to function symbols. They are generated by the following grammar, where Γ is a logical
context, and ~y is a sequence of logical variables:

Φ ∈ SpecCtxt ::= · | Φ, f : (Γ,~y){P}{r.Q}

A function specification context is well-formed with regards to a set of region types R when

R; Γ,~y : Val ` P : Assn R; Γ,~y : Val, r : Val ` Q : Assn

where P and Q do not mention any program variables. Furthermore we require that f occurs at most
once in Φ.

These conditions are enough for a well-formed function specification context to induce a partial
mapping from function names to function specifications, and we denote a successful lookup with

Φ(f) = (Γ,~y){P}{r.Q}

14

Definition 49 (Spec, Statement Specifications). The set of syntactic statement specifications is defined
by the following grammar, where P, Q, U ∈ Term, r ∈ LVar and s ∈ Stmt.

s ∈ Spec ::= {P}s{Q | r.U}

A statement specification is well-typed wrt. a region context R, function specification context Φ (well-
typed wrt. dom(R)) and logical context Γ according to the following judgement:

dom(R); Γ ` P : Assn
dom(R); Γ ` Q : Assn
dom(R); Γ, r : Val ` U : Assn

R; Φ; Γ ` {P} s {Q | r.U} : Spec

Definition 50 (− atomic, Atomic Statements). We declare a subset of Stmt as atomic:

x := CAS(e1,e2,e3) atomic [e1] := e2 atomic x := [e] atomic

Definition 51 (Atomic Statement Specifications). The set of syntactic atomic statement specifications
is given by the following grammar where P, Q ∈ Term, s ∈ Stmt with s atomic:

Atomic ::= 〈P〉s〈Q〉

An atomic statement specification is well-typed wrt. to collection of region identifiers S, a region
declaration R and a logical context Γ according to the following judgement:

R; Γ ` P : Assn R; Γ ` Q : Assn ∀x ∈ S. Γ ` x : Region
R; Γ `S 〈P〉 s 〈Q〉 : Atomic

Definition 52 (Region Opening). We define a judgment for expressing the opening of regions, given
by the following grammar where I is some finite index set P, Qi are assertions, ∆i are contexts and~ri
are sequences of region identifiers:

[P] open [{(∆i).(Qi,~ri}i∈I]

An opening judgment is well-formed with regards to a set of region-types R and a logical context Γ
according to the following judgement:

R; Γ ` P : Assn
∀i ∈ I.R; Γ, ∆i,~ri : Region ` Qi : Assn

R; Γ ` [P] open [{(∆i).(Qi,~ri}i∈I]

Definition 53 (Region Closing). We define a judgment for closing regions, given by the following
grammar where P, Q are assertions and~r a sequence of region identifiers:

[P] close(~r) [Q]

A closing judgement is well-formed with regards to a set of region types R and a logical context Γ
according to the following judgment:

R; Γ ` P : Assn R; Γ ` Q : Assn
R; Γ ` [P] close(~r) [Q]

Convention 54. For two sequences of assertion logic expressions of equal length n, ~x and ~y, we use
the notation ~x = ~y as notation for the assertion x1 = y1 ∗ . . . ∗ xn = yn.

Definition 55 (FunctionSpec, Function Specifications). The set of syntactic function specifications is
defined by the following grammar, letting f ∈ Fun,~x ∈ Var∗, P, Q ∈ Term are assertions that does not
mention program variables and s ∈ Stmt, Γ ∈ Context and ~y ∈ LVar∗.

FunctionSpec ::= f(~x)(Γ,~y){P}s{r.Q}

15

A function specification is well-typed wrt. a region context R and a function specification context
Φ if its constituents form a well-typed statement specification.

R; Φ; Γ,~y : Val ` {P ∗ (~x = ~y)} s {∀r.Q | r.Q} : Spec |~x| = |~y|
R; Φ ` f(~x)(Γ,~y){P}s{r.Q} : FunctionSpec

Definition 56 (d−e, Function Specification Erasure (Specification)). We define

d−e : FunctionSpec∗ → SpecCtxt

as follows:

dεe = ·⌈
~f, fi(~x)(Γ,~y){P}s{r.Q}

⌉
=
⌈
~f
⌉

, fi : (Γ,~y){P}{r.Q}

Definition 57 (ProgramSpec, Program Specifications). The set of syntactic program specifications is
defined as sequences of region declarations and function specifications:

ProgramSpec := RegionDecl∗; FunctionSpec∗

A program specification is well-typed when each individual function specification is well-typed
wrt. to the region and function specification contexts described by the region and function declara-
tions, respectively:

~r;
⌈
~f
⌉
` fi : FunctionSpec, ∀fi ∈~f
`~r;~f : ProgramSpec

6.2 Specification Rules

6.2.1 Program Specification

We say that we can derive a program specification when we can derive each of the individual function
specifications with respect to the region and function contexts specficied by the program specification.

~r;
⌈
~f
⌉
` fi, ∀fi ∈~f
`~r;~f

6.2.2 Function Specification

We say that we can derive a function specification when we can derive its implementation with respect
to the pre- and post-condition imposed by the function specification.

R; Φ; Γ,~y : Val ` {P ∗ (~x = ~y)} s {∀r.Q | r.Q}
R; Φ ` f(~x)(Γ,~y){P}s{r.Q}

16

6.2.3 Statement Specification

Definition 58 (mod(−), Modifies Sets). We define the set of local variables modified by a given state-
ment as follows:

mod : Stmt→ P(Var)
mod(s1;s2) = mod(s1) ∪mod(s2)

mod(if(e) then {s1} else {s2}) = mod(s1) ∪mod(s2)

mod(while(e){s}) = mod(s)
mod(x := alloc(e)) = {x}

mod(x := CAS(e1,e2,e3)) = {x}
mod(x := e) = {x}

mod([e1] := e2) = ∅
mod(x := [e]) = {x}

mod(x := f(~e)) = {x}
mod(return e) = ∅

mod(fork f(~e)) = ∅
mod(skip) = ∅

Φ(f) = (Γ,~y){P}{r.Q}
R; Φ; Γ,~y : Val ` {P ∗ (~e = ~y)} x:=f(~e) {∃r.x = r ∗Q | r.U}

R; Φ; Γ ` {>} return e {Q | r.e = r}

R; Φ; Γ ` {P ∗ e 6= 0} s1 {Q | r.U} R; Φ; Γ ` {P ∗ e = 0} s2 {Q | r.U}
R; Φ; Γ ` {P} if(e) then {s1} else {s2} {Q | r.U}

R; Φ; Γ ` {I ∗ e 6= 0} s {I | r.U}
R; Φ; Γ ` {I} while(e){s} {I ∗ e = 0 | r.U}

R; Φ; Γ ` {e = v ∗ v > 0} x := alloc(e) {∃n.x = n ∗ n 7→ [v] | r.U}

R; Φ; Γ ` {P} skip {P | r.U}
R; Φ; Γ ` {P} s1 {S | r.U} R; Φ; Γ ` {S} s2 {Q | r.U}

R; Φ; Γ ` {P} s1;s2 {Q | r.U}

R; Φ; Γ ` {x = e0} x := e {x = e[e0/x] | r.U}
Φ(f) = (Γ,~y){P}{r.Q}

R; Φ; Γ ` {P ∗ (~e = ~y)} fork f(~e) {> | r.U}

R; Φ; Γ ` {P} s {Q | r.U} mod(s) ∩ F = ∅
R; Φ; Γ ` {P ∗ F} s {Q ∗ F | r.U}

R; Γ | P ` P′ R; Φ; Γ ` {P′} s {Q′ | r.U′} R; Γ | Q′ ` Q R; Γ, r : Val | U′ ` U
R; Φ; Γ ` {P} s {Q | r.U}

R; Γ ` [P] open [{(∆i).(P′i ,~ri)}i∈I]
∀i ∈ I.
R; Γ, ∆i `{~ri} 〈P

′
i 〉 s 〈Qi ∗ newRegion(~ni)〉

R; Γ, ∆i ` [Qi ∗ newRegion(~ni)] close(~ri,~ni) [Q]

R; Φ; Γ ` {P} s {stabilize(Q) | r.U}

17

6.2.4 Atomic Statement Specifications

R; Γ `S 〈e1 7→ _〉 [e1] := e2 〈e1 7→ e2〉 R; Γ `S 〈e = n ∗ n 7→ v〉 x := [e] 〈x = v ∗ n 7→ v〉

R; Γ `S 〈e1 = a ∗ a 7→ v ∗ e2 = old ∗ e3 = new〉
x := CAS(e1,e2,e3)

〈(x 6= 0 ∗ v = old ∗ a 7→ new) ∨ (x = 0 ∗ v 6= old ∗ a 7→ v〉

7 Model

We here describe the constructions in Sets that we use to interpret the specification logic.

Definition 59 (Perm, Permissions). We define the set of Perm as the free atomless boolean algebra over
an infinite set.

Definition 60 (RegionId, Region Identifiers). We assume a set of region identifiers, RegionId.

Definition 61 (LVal, Logical Values). We define the set of logical values to be the disjoint union of
program values, permissions and region identifiers:

LVal := Val + Perm + RegionId

recalling the definition of program values from Definition 11.

Definition 62 (AbstractState, Abstract States). We define the set of abstract region states as the set of
program values:

AbstractState := Val

Definition 63 (PCMZ, Partial Commutative Monoid with Zero). A PCMZ M is a 4-tuple (|M|, ε, 0, ·)
consisting of an underlying set |M| with a distinguished element ε (the unit), a distinguished element
0 (the zero) and a partial composition on that set (multiplication or simply ’composition’, noted ·)
satisfying the following requirements for all a, b, c ∈ |M|, where x ↓ y means ’x · y is defined’.

• a ↓ b implies (b ↓ a and a · b = b · a).

• ε ↓ a and ε · a = a.

• 0 ↓ a and 0 · a = 0.

• (b ↓ c and a ↓ (b · c)) implies (a ↓ b and (a · b) ↓ c and a · (b · c) = (a · b) · c).

We note that the free PCMZ over a set X is the usual, initial construction of a structure over an
underlying set. Note that by initiality, any function f from X into the underlying set of another PCMZ,
say |M|, gives us a canonical PCMZ homomorphism from the free PCMZ over X to M, denoted f̄ .

Definition 64 (Guard, The PCMZ of Primitive Guards). We define Guard as the free PCMZ over a set
of expressions over PrimitiveGuard, call it |Guard|, built according to the following grammar wherein
G ranges over PrimitiveGuard, π ranges over Perm and x ranges over LVar:

|Guard| ::= G
| G[π]

| G(x)

Definition 65 (GuardAlgebra, Guard Algebras).

∑
G:PCMZ

|Guard| → |G|

18

Definition 66 (GuardAlgebraAssignment, Guard Algebra Assignment). We define a guard algebra as-
signment as a partial finite map from region types to guard algebras,

GuardAlgebraAssignment := RegionType fin
⇀ GuardAlgebra

Definition 67 (RegionAssignment, Region Assignments). We define region assignments as partial finite
maps from region identifiers to triples describing their (indexed) region type, state, and which guards
we have in possession.

RegionAssignment := RegionId fin
⇀

((RegionType× LVal∗)×AbstractState× |Guard|)

We refer to the first, second and third component of the codomain as α(r).type, α(r).state and α(r).guards
for α ∈ RegionAssignment, r ∈ dom(α).

Region assignments form a partial commutative monoid where composition is defined as follows
- we use ⊥ to denote undefined values, i.e. f (a) = ⊥ if a 6∈ dom(f).

(a1 · a2)(r) =

a1(r) a2(r) = ⊥
a2(r) a1(r) = ⊥
(a1(r).type, a1(r).state, a1(r).guards · a2(r).guards) a1(r).type = a2(r).type

∧ a1(r).state = a2(r).state
⊥ otherwise

Observe that the empty map is a unit. Associativity and commutativity is inherited by the properties
of equality and the PCM Guard.

This gives rise to canonical partial order known as the extension order, here written in full: we say
a1 v a2 iff dom(a1) ⊆ dom(a2) and for all r ∈ dom(a1):

1. a1(r).type = a2(r).type

2. a1(r).state = a2(r).state

3. a1(r).guards v a2(r).guards

Definition 68 (Abstract Configuration). Abstract machine configurations consists of a heap and region
assignment pair:

Heap× RegionAssignment

Abstract configurations form a partial commutative monoid by pointwise lifting of both unit and
composition. This also gives rise to the pointwise extension order:

(h1, a1) ≤ (h2, a2)
def⇐⇒ ∃(h3, a3). h1 · h3 = h2 ∧ a1 · a3 = a2

Definition 69 (Assertion, Assertions). We define assertions as upwards closed subsets of abstract con-
figurations, ordered according to the canonical extension order.

Assertion := P ↑ (Heap× RegionAssignment)

Definition 70 (RegionInterpretation, Region Interpretations).

RegionInterpretation := AbstractState ⇀ Assertion

Definition 71 (LTS, Labeled Transition Systems).

LTS := |Guard| mon−−→ P(AbstractState×AbstractState)

19

Definition 72 (RegionTypeAssignment, Region Type Assignments). A region type assignment associates
a region interpretation, labeled transition system and guard algebra with each (instantiated) region
type.

RegionTypeAssignment :=(RegionType× LVal∗) ⇀
RegionInterpretation× LTS×GuardAlgebra

We refer to the three components of the type assignment ρ(T(r,~x : ~τ),~v) as follows:

ρ(T(r,~x : ~τ),~v).int ρ(T(r,~x : ~τ),~v).lts ρ(T(r,~x : ~τ),~v).GA

The choice of guard algebra must be independent of the instantiated values, i.e. for a given ρ ∈
RegionTypeAssignment, for any region type T(r,~x : ~τ) and two choices of values ~v and ~u it must hold
that

ρ(T(r,~x : ~τ),~v) = ρ(T(r,~x : ~τ),~u)

Definition 73 (GA(−), RTA Algebra Assignment Erasure). We denote the erasure of region interpre-
tation and labeled transition system from a region type assignment ρ as GA(ρ), erasing a

(RegionType× LVal∗) fin
⇀ RegionInterpretation× LTS×GuardAlgebra

to a

RegionType fin
⇀ GuardAlgebra

8 Interpretation

Definition 74 (Interpretation of Primitive Types). We interpret the primitive types into the correspond-
ing sets:

JValK = Val
JPermK = Perm

JRegionK = RegionId

Definition 75 (Interpretation of Logical Variable Contexts). We interpret program variable contexts as
substitutions, valuations or partial maps to values of the appropriate type:

J·K = ∅
JΓ, x : τK = {γ[x 7→ v] | γ ∈ JΓK , v ∈ JτK}

Definition 76 (Interpretation of Program Expressions). We interpret program expressions as functions
from interpretations of their contexts into Val.

JΓ ` M : ValK : JΓK× Stack→ Val

JΓ ` x : ValK (γ, σ) = γ(x)
JΓ ` x : ValK (γ, σ) = σ(x)

JΓ ` n : ValK (γ, σ) = n
JΓ ` M op N : ValK (γ, σ) = JΓ ` M : ValK (γ, σ) op JΓ ` N : ValK (γ, σ)

JΓ ` M comp N : ValK (γ, σ) =

{
1 if JΓ ` M : ValK (γ, σ) comp JΓ ` N : ValK (γ, σ)

0 otherwise

20

Definition 77 (Interpretation of Permission Expressions). We interpret permission expressions as func-
tions from interpretations of their contexts into Perm.

JΓ ` M : PermK : JΓK→ Perm

JΓ ` x : PermK (γ) = γ(x)
JΓ ` 0p : PermK (γ) = ⊥
JΓ ` 1p : PermK (γ) = >

JΓ `∼ M : PermK (γ) = (JΓ ` M : PermK (γ))C

JΓ ` M · N : PermK (γ) = JΓ ` M : PermK (γ) ∧ JΓ ` N : PermK (γ)

Definition 78 (Interpretation of Region Expressions). We interpret region expressions as functions
from interpretations of their contexts to region identifiers:

JΓ ` M : RegionK : JΓK→ RegionId

JΓ ` x : RegionK (γ) = γ(x)

Definition 79 (Interpretation of Pure Assertions). We interpret pure assertions as functions from in-
terpretaions of their contexts into 2. The codomain 2 is a complete boolean algebra, so we omit the
usual, pointwise definitions of the standard logical connectives.

JΓ ` M : PureK : JΓK× Stack→ 2

JΓ ` M =τ N : PureK (γ, σ) ⇐⇒
JΓ ` M : τK (γ, σ) =τ JΓ ` N : τK (γ, σ)

JΓ ` ∀x : τ.M : PureK (γ, σ) ⇐⇒
∀v ∈ JτK . JΓ, x : τ; σ ` M : PureK (γ[x 7→ v], σ)

JΓ ` ∃x : τ.M : PureK (γ, σ) ⇐⇒
∃v ∈ JτK . JΓ, x : τ; σ ` M : PureK (γ[x 7→ v], σ)

JΓ ` compatible(M, N) : PureK (γ, σ) ⇐⇒
JΓ ` M : PermK (γ) ∧ JΓ ` N : PermK (γ) 6= ⊥

Definition 80 (Interpretation of Guard Expressions). We interpret guard expressions as expressions in
Guard, the free PCMZ over primitive guard symbols:

JΓ ` G : GuardK : JΓK× Stack→ |Guard|

JΓ ` G : GuardK (γ, σ) = G
JΓ ` G[M] : GuardK (γ, σ) = G[JΓ ` M : PermK (γ)]
JΓ ` G(M) : GuardK (γ, σ) = G(JΓ ` M : ValK (γ, σ))

JΓ ` M ∗ N : GuardK (γ, σ) = JΓ ` M : GuardK (γ, σ) · JΓ ` N : GuardK (γ, σ)

Definition 81 (Region Type Guard Algebra Assignment). We denote the set of guard algebra assign-
ments corresponding to a well-formed region type context R as GA(R), and define it as follows:

GA(R) := {ρ | dom(ρ) = R}

21

Definition 82 (Interpretation of Assertions). We interpret assertions as functions from interpretations
of their contexts into upwards closed subsets of heaps and region assignments. Upwards closed sub-
sets of elements drawn from a partial commutative monoid has enough structure to support standard
intuitionistic separation logic, so we omit the standard, pointwise interpretations for now.

JR; Γ ` M : AssnK : GA(R)× JΓK× Stack→ P ↑ (Heap× RegionAssignment)

JR; Γ ` M : AssnK (ρ, γ, σ) =

{
> if JΓ ` M : PureK (γ, σ)

⊥ otherwise

JR; Γ ` M ? N : O : AssnK (ρ, γ, σ) =

{
JR; Γ ` N : AssnK (ρ, γ, σ) if JΓ ` M : PureK (γ, σ)

JR; Γ ` O : AssnK (ρ, γ, σ) otherwise

JR; Γ ` x@(M) : AssnK (ρ, γ, σ) = {(h, α) | ∀r, G, f .

∧ f (JΓ ` M : GuardK (γ, σ)) vG f (α(r).guards)
∧ r = JΓ ` x : RegionK (γ)
∧ (G, f) = ρ(π1(α(r).type))}

r
R; Γ ` T(x, ~M, N) : Assn

z
(ρ, γ, σ) = {(h, α) | ∀r, s,~v. ∃~x,~τ.

∧ α(r).type = (T(r,~x : ~τ),~v) ∧ α(r).state = s
∧ r = JΓ ` x : RegionK (γ)
∧ vi = JΓ ` Mi : τiK (γ, σ)

∧ s = JΓ ` N : ValK (γ, σ)}
JR; Γ ` M 7→ N : AssnK (ρ, γ, σ) = {(h, α) | x ∈ Addr ∧ h(x) = JΓ ` N : ValK (γ, σ)

∧ x = JΓ ` M : ValK (γ, σ)}
JR; Γ ` M 7→ [N] : AssnK (ρ, γ, σ) = {(h, α) | ∃~v. x ∈ Addr∧ n > 0∧ h(x, ..., x + (n− 1)) = ~v

∧ x = JΓ ` M : ValK (γ, σ)

∧ n = JΓ ` N : ValK (γ, σ)}
JR; Γ ` M ∗ N : AssnK (ρ, γ, σ) = JR; Γ ` M : AssnK (ρ, γ, σ) ∗ JR; Γ ` N : AssnK (ρ, γ, σ)

JR; Γ ` emp : AssnK (ρ, γ, σ) = {(emp, α) | ∀α}
JR; Γ ` M ∧ N : AssnK (ρ, γ, σ) = JR; Γ ` M : AssnK (ρ, γ, σ) ∩ JR; Γ ` N : AssnK (ρ, γ, σ)

JR; Γ ` M ∨ N : AssnK (ρ, γ, σ) = JR; Γ ` M : AssnK (ρ, γ, σ) ∪ JR; Γ ` N : AssnK (ρ, γ, σ)

Convention 83. For particular ρ and γ we write JR; Γ ` M : AssnK (ρ, γ) to denote the function

λσ. JR; Γ ` M : AssnK (ρ, γ, σ)

Definition 84 (Interpretation of Entailments). We intepret a well-typed derivation of entailment of as-
sertions as functions from the interpretations of their environment into 2. The domain of interpretation
of assertions is a complete BI-algebra, and entailment corresponds to subset inclusion.

JR; Γ | ∆ ` QK : GA(R)× JΓK× Stack→ 2

JR; Γ | ∆ ` QK (ρ, γ, σ) ⇐⇒∧
P∈∆

JR; Γ ` P : AssnK (ρ, γ, σ) ⊆ JR; Γ ` Q : AssnK (ρ, γ, σ)

22

8.1 Interpretation of Specifications

We need some auxilliary definitions before we can define the interpretation of specifications.

Definition 85 (GADef(−,−), Definedness of Guard w.r.t. Guard Algebra).

GADef ⊆ GuardAlgebra×Guard

GADef((G; f), gs) def⇐⇒ f̄ (gs) 6= ⊥G

Definition 86 (wf(−,−,−), Well-Formedness of Region Assignments).

wf ⊆ GuardAlgebraAssignment× RegionAssignment

wf(ρ, a) def⇐⇒ ∀r ∈ dom(a), GADef(ρ(π1(a(r).type)), a(r).guards)

Definition 87 (collapse−−(−,−), Abstract Configuration Collapse). Collapsing combines the informa-
tion in open regions and the current heap into a single assertion. It uses a region type assignment to
interpret regions and a set of regions that are not opened in order to collapse only the open regions.

collapseρ
s : (Heap× RegionAssignment)→ P(Heap× RegionAssignment)

collapseρ
s (h, a) = {(h, a)} ∗~r∈(dom(a)\s) ρ(r).int(a(r).type)

Definition 88 (b−c−−, Erasure). We define a notion of erasure - the concrete heaps that are all described
by the same abstract configuration. It is defined with respect to a region type assignment and a
collection of region as that are not to be collapsed:

b−c−− : (Heap× RegionAssignment)× RegionTypeAssignment×P(RegionId)→ P(Heap)

b(h, a)cρs := {h′ | (h′, a′) ∈ collapseρ
s (h, a) ∧wf(GA(ρ), a′)}

Definition 89 (Interpretation of Guard Algebra Declaration). We interpret a guard algebra declaration
as a guard algebra: a PCMZ M and a function f : |Guard| → |M|, as follows:

J0K = (2, {}) (the empty function)
JGK = (3, {G 7→ point})

J%GK = (Perm, {G[π] 7→ π})
J#GK = (3Val, {G(v) 7→ [v 7→ point]})

JX ∗YK = (M× N, (i ◦ f) ∪ (j ◦ g))
where

i : M→ M× N
i(m) = (m, εN)

j : N → M× N
j(n) = (εM, n)
(M, f) = JXK
(N, g) = JYK
and f and g have disjoint domains

JX + YK = (M + N, [f , 0] ∪ [g, 1])
where
(M, f) = JXK
(N, g) = JYK
and f and g have disjoint domains

We can extend f : |Guard| → |M| to a total function by mapping everything else to zero. From this,
we have a PCMZ homomorphism f̄ : Guard→ M.

Moreover, if generated from the above constructions, it will be surjective, and so im(f̄) ∼= M (as
PCMZs). f̄ defines an equivalence relation ker(f̄) on Guard, with Guard/ ker(f̄) ∼= im(f̄).

23

Definition 90 (Interpretation of Region Interpretation Declarations). We interpret a region interpreta-
tion declaration, well-formed with respect to a set of region types R, identifier r and variables ~x : ~τ as
a function from interpretations of these contexts, to region interpretations:

GA(R)× Jr : Region,~x : ~τK→ RegionInterpretation

Given a guard algebra assignment ρ ∈ GA(R), a substitution γ ∈ Jr : Region,~x : ~τK, for each clause
(∆).Π | e : P we conditionally extend the resulting map from AbstractState to Assertion by the following:

v 7→ JR; r : Region,~x : ~τ, ∆ ` P : AssnK (ρ, γ · δ, σ)

if there is a δ ∈ J∆K such that

JR; r : Region,~x : ~τ, ∆ ` Π : PureK (γ · δ, σ)

and v = JΓ ` e : ValK (γ · δ, σ) hold, for any σ at all, as none of these assertions can mention program
variables.

Since no clause overlap, there will be at most one clause for which the condition is satisfied, hence
this is a well-defined partial map.

Definition 91 (Interpretation of Action Declarations). We can region interpret an action declaration,
well-formed with respect to a set of region types R, identifier r and variables ~x : ~τ, as describing an
LTS as function of interpretations of its context:

GA(R)× Jr : Region,~x : ~τK→ LTS

Given a guard algebra assignment ρ ∈ GA(R), a substitution γ ∈ Jr : Region,~x : ~τK, for each clause
(∆).P | G : e1 e2 we extend the mapping as follows:

F 7→ {(JΓ ` e1 : ValK (γ · δ, σ), JΓ ` e2 : ValK (γ · δ, σ)) | JΓ ` G : GuardK (ρ, γ · δ) = F}∗

if there exists a δ ∈ J∆K such that JR; r : Region,~x : ~τ, ∆ ` P : AssnK (ρ, γ · δ, σ) for any stack σ at all,
where ∗ indicates the reflexive, transitive closure of the set.

Definition 92 (Guard Compatability Complement). We can define the “compatible complement” to a
collection of guards M ⊆ |Guard| with respect to a particular guard algebra G as follows:

M =
{

g′ ∈ |Guard| | ∀g ∈ M, GADe f (G, g · g′)
}

Definition 93 (Rely(−), The Rely Relation). We can describe the interference allowed by other threads
by help of a region type assignment ρ, considering all the transitions allowed by guards compatible
with ours:

Rely(ρ) ⊆ (Heap× RegionAssignment)× (Heap× RegionAssignment)

We say two abstract configurations (h1, a1) and (h2, a2) are related iff

• h1 = h2

• dom(α1) ⊆ dom(α2)

• ∀r ∈ dom(a1).a1(r).guards = a2(r).guards

• ∀r ∈ dom(a1), (a1(r).state, a2(r).state) ∈ ρ(a1(r).type).lts(a1(r).guards), where the guard com-
patibility complement is with respect to the guard algebra ρ(a1(r).type).GA

Definition 94 (Interpretation of Region Contexts). We interpret a well-formed region context R into a
region type assignment:

JRK : RegionTypeAssignment

24

For each associated T(r,~x : ~τ)(g, i, a), let JgK be the guard algebra corresponding to g. Then, let
JiK (JgK ,~v) and JaK (JgK ,~v) be the region interpretation and LTS correponding to i and a, respectively,
under valuation ~v, such that vi ∈ JτiK, of the region parameters. Then we extend the resulting map as
follows:

(T(r,~x : ~τ),~v) 7→ (JiK (JgK ,~v), JaK (JgK ,~v), JgK)

This definition is well-formed as a map as each region type is bound once in the region context.

Definition 95 (Stabilisation). We define the stabilisation of an assertion P as intuitively the strongest
weaker stable assertion:

stabilizeρ(P) := {q | ∃p ∈ P. (p, q) ∈ Rely(ρ)}

We remark that by reflexivity of the rely relation, it is always the case that P ≤ stabilizeρ(P).

Definition 96 (stable−(−), Assertion Stability). An assertion P is stable with respect to region type
assignment ρ when

stabilizeρ(P) ≤ P

Hence, stable assertions are equivalent to their stabilizations.

Definition 97 (− − {−}{−}, Semantic Action Judgement). We define α ρ {P}{Q} to hold if and
only if, for all R ∈ Assertion such that stable(R) we have JαK (bP ∗ Rcρ∅) ⊆ bQ ∗ Rcρ∅.

Lemma 98 (Locality of Action Judgement). For all stable assertions R,

α ρ {P}{Q} ⇒ α ρ {P ∗ R}{Q ∗ R}

Proof. Chose the frame in the assumption to be R ∗ R′ where R′ is the given frame in the conclusion of
the Lemma. Stable assertions are closed under ∗.

Definition 99 (�, View Shift).

P � Q def⇐⇒ id ρ {P}{Q}

Lemma 100. Assertions ordered by semantic entailment forms a partial order.

Proof. The action of the identity action on sets of heap is the identity. Hence, assertions under semantic
entailment forms a partial order because sets ordered by set inclusion does.

Lemma 101 (Frame Property of Semantic Entailment).

P � Q⇒ (∀R.stable(R)⇒ P ∗ R � Q ∗ R)

Proof. Directly from Lemma 98.

Lemma 102 (Entailment is Semantic Entailment).

R; Γ | ∆ ` Q⇒ ∀ρ ∈ JRK , ∀γ ∈ JΓK , ∀σ.∧
P∈∆

JR; Γ ` P : AssnK (ρ, γ, σ) � JR; Γ ` Q : AssnK (ρ, γ, σ)

Lemma 103 (�-Closure of Action Judgement). If

P � P′ α ρ {P′}{Q′} Q′ � Q

then

α ρ {P}{Q}

25

Proof. We proceed by direct proof. Suppose a stable frame R and suppose a configuration (h, a) in the
assertion P ∗ R. By the definition of assertions, that means we can split (h, a) into (hP, aP) ∈ P and
(hR, aR) ∈ R. By P � P′, we get that (hP, aP) ∈ P′. Hence, by chosing the frame R in the assumption,
we get that JαK ((hP, aP)) ∈ Q′, and again, in Q, precisely as desired.

Definition 104 (safe, Execution Safety). We define safe to be a recursively defined relation on

RegionTypeAssignment×N× Env×Assertion× Stack×

Cont× (Stack→ Assertion)× (Stack→ Val→ Assertion),

with safeρ
n(E, P, σ, κ, Q, U) intuitively capturing that execution of κ in stack σ satisfying P will run and,

within n steps, safely halt execution in a stack satisfying Q or return a value v satisfying U(v).
We say safe0(E, P, σ, κ, Q, U) always holds, and safen+1(E, P, σ, κ, Q, U) holds iff ...

1. ... when κ = skip then

(a) id ρ {P}{Q(σ)}

2. ... when κ = return e or κ = return e;s, for some e and s, then

(a) id ρ {P}{U(σ)(JeKσ)}

3. ... when there is a forking step E ` (σ, κ)
fork(f,~v)−−−−−→ (σ′, κ′) for some f and ~v, there exists

P′, F : Assertion and (~x, s) such that,

(a) E(f) = (~x, s)

(b) id ρ {P}{P′ ∗ F}

(c) safeρ
n(E, P′, σ′, κ′, Q, U)

(d) safeρ
n(E, F, [~x 7→ ~v], s, λ_.>, λ_.λ_.>)

4. ... when there is a non-forking step E ` (σ, κ)
α−→ (σ′, κ′) there is a P′ : Assertion such that

(a) α ρ {P}{P′}

(b) safeρ
n(E, P′, σ′, κ′, Q, U)

We omit the super-script ρ when it is clear from context. At any one time there will only be a single
such region type assignment in play.

Definition 105 (Environment/Function Spec Agreement).

− �−− − : − ⊆ Env× RegionTypeAssignment×N× Fun× FunctionSpec

An environment implements a function specification of f for n steps, noted

E �ρ
n f : (Γ,~y){P}{r.Q}

if and only if there exists ~x ∈ Var∗ and s ∈ Stmt such that E(f) = (~x, s) and, for all γ ∈ JΓ,~y : ValK,
σ ∈ Stack,

safeρ
n(E, JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ),

σ,
s,
λσ. JR; Γ,~y : Val ` ∀r.Q : AssnK (ρ, γ, σ),
λσ.λv. JR; Γ,~y : Val, r : Val ` Q : AssnK (ρ, γ[r 7→ v], σ))

26

Definition 106 (Environment/Specification Context Agreement).

− �−− − ⊆ Env× RegionTypeAssignment×N× SpecCtxt

An environment E implements a specification context Φ for n steps, noted E �ρ
n Φ when, for each

individual f ∈ dom(Φ), E �ρ
n f : Φ(f).

As with the safe predicate, we elide the region type assignment when clear from the context.

Definition 107 (Interpretation of “Triples”). We define the interpretation of a Hoare “triple” as a
function

JR; Φ; Γ ` {P} s {Q | r.U} : SpecK : JRK× JΓK→ P ↓ (N)

defined as follows:

JR; Φ; Γ ` {P} s {Q | r.U} : SpecK(ρ, γ) =

{n ∈N | ∀E : Env.(∀n′ < n.E �ρ
n′ Φ)⇒ ∀σ : Stack.

safeρ
n(E,
Jdom(R); Γ ` P : AssnK (GA(ρ), γ, σ),
σ,
s,
λσ. Jdom(R); Γ ` Q : AssnK (GA(ρ), γ, σ),
λσ.λv. Jdom(R); Γ, r : Val ` U : AssnK (GA(ρ), γ[r 7→ v], σ))}

Lemma 108 (Interpretation of Triples is Well-Defined). For all ρ ∈ JRK, γ ∈ JΓK,

JR; Φ; Γ ` {P} s {Q | r.U} : SpecK (ρ, γ)

is downwards closed.

Definition 109 (Interpretation of Atomic Triples). We define the interpretaion of atomic triples as a
function of well-typed triples as follows:

JR; Γ `S 〈P〉 s 〈Q〉 : AtomicK : JRK× JΓK× Stack→ 2

where JR; Γ `S 〈P〉 s 〈Q〉K (ρ, γ, σ) holds if and only if there is α, σ′ such that

1. E ` (σ, s) α−→ (σ′, skip)

2. For all~r ∈ JSK and stable assertions R,

JαK (bJR; Γ ` P : AssnK (ρ, γ, σ) ∗ Rcρ~r) ⊆
⌊
JR; Γ ` Q : AssnK (ρ, γ, σ′) ∗ R

⌋ρ
~r

Definition 110 (Interpretation of Open Region Judgment). We define the interpretation of open region
judgments as a function of well-typed judgments as follows:

JR; Γ ` [P] open [{(∆i).(Qi,~ri)}i∈I]K : JRK× JΓK× Stack→ 2

where JR; Γ ` [P] open [{(∆i).(Qi,~ri)}i∈I]K (ρ, γ, σ) holds if and only if for all p ∈ JPK and frame r,
there is an index i ∈ I with δ ∈ J∆iK and q ∈ JQiK (γδ) with ~y ∈ J~riK (γδ) such that there is an updated
frame r′ with

1. (r, r′) ∈ Rely(ρ)

2. bp · rcρ∅ ⊆ bq · r
′cρ~y

27

Definition 111 (Interpretation of Close Region Judgment). We define the interpretation of close region
judgments as a function of well-typed judgments as follows:

JΓ ` [P] close(~r) [Q]K : JRK× JΓK× Stack→ 2

where JΓ ` [P] close(~r) [Q]K (ρ, γ, σ) holds if and only if, for all p ∈ JR; Γ ` P : AssnK (ρ, γ, σ) and any
choice of frame r, there is a q ∈ JR; Γ ` Q : AssnK (ρ, γ, σ) and an updated frame r′ such that

1. (r, r′) ∈ Rely(ρ)

2. bp · rcρ~r ⊆ bq · r
′cρ∅

Definition 112 (Interpretation of Function Specifications). We interpret well-typed function specifica-
tions as functions from interpretations of a function context into down-closed sets of natural numbers

JR; Φ ` f(~x)(Γ,~y){P}s{r.Q} : FunctionSpecK : JRK→ P ↓ (N)

JR; Φ ` f(~x)(Γ,~y){P}s{r.Q} : FunctionSpecK (ρ) =⋂
γ∈JΓ,~y:ValK

JR; Φ; Γ,~y : Val ` {P ∗ (~x = ~y)} s {∀r.Q | r.Q} : SpecK (ρ, γ)

Definition 113 (Interpretation of Program Specifications). We interpret well-typed program specifica-
tions into 2:

q
`~r;~f : ProgramSpec

y
⇐⇒ ∀n ∈N.

⌊
~f
⌋
�J~rKn

⌈
~f
⌉

9 Soundness

9.1 Soundness of Specification Logic

9.1.1 Soundness of Statement Specifications

Lemma 114 (Required for “Soundness of Function Call”). Suppose P : Assertion and Q : Term that
does not mention program variables. If

safen(E, P, σ′, s,
Jdom(R); Γ ` ∀r : Val.Q : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` Q : AssnK (ρ, γ[r 7→ v]))

then, for any stack σ, program variable x and U : Stack→ Val→ Assertion:

safen(E, P, σ, x:=(σ′, s), Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ), U).

Proof. Proceed by Induction on n; assume i.e. the lemma holds at all n′ < n.
Suppose the antecedent along with a σ, x and U. We now have to show.

safen(E, P, σ, x:=(σ′, s), Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (γ), U).

To show safe is to show the code in question safe when it halts, returns and steps. We know that the
code x:=(σ′, s) neither immediately returns or halts, it must take a (possibly forking) execution step.
By the operational semantics, which step depends on the shape of the code of the running function, s.
By case analysis of the operational semantics, there are 4 cases, and we handle each in sequence.

28

Halt Suppose s = skip. By assumption on s, we then know that

P � Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ, σ′)

We can now step

E ` (σ, x:=(σ′, skip)) id−→ (σ[x 7→ v], skip)

for some v and thus have to find a P′ : Assertion such that

(a) P � P′

(b) safen−1(E, P′, σ[x 7→ v], skip, Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ))

Pick P′ := Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ, σ[x 7→ v]), and (b) is immediate. To show (a)
is to show:

P � Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ, σ[x 7→ v])

By transitivity of � it suffices to show that

Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ, σ′) � Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ, σ[x 7→ v])

Since Q does not mention program variables,

Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ, σ′) = Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ, σ[x 7→ v])

and thus, by Lemma 102 it suffices to show that

R; Γ | ∀r.Q ` ∃r.x = r ∗Q,

which is a simple derivation:

R; Γ | ∀r.Q ` x = x R; Γ | ∀r.Q ` Q
R; Γ | ∀r.Q ` x = x ∗Q

R; Γ | ∀r.Q ` ∃r.x = r ∗Q

Return This case is completely analogous to the previous, except we now have a specific value rather
than v; observe the previous case made no explicit use of v.

Non-forking step If s is such that

E ` (σ′, s) α−→ (σ′′, s′)

then we know from the safety of s that there is a P′ such that P � P′ and

safen−1(E, P′, σ′′, s′, Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ), λv. JR; Γ, r : Val ` Q : AssnK (ρ, γ[r 7→ v]))

holds. Further, we know by the operational semantics that

E ` (σ, x:=(σ′, s)) α−→ (σ, x:=(σ′′, s′))

and thus we need to find a P′ such that

(a) P � P′

(b) safen−1(E, P′, σ, x:=(σ′, s′), J∃r : Val.x = r ∗QK (γ))

We choose the P′ given by assumption, and (a) is immediate.
(b) follows by induction hypothesis, with the necessary premise given by the assumption on s.

29

Forking step The case of forking steps is analogous to non-forking steps, and hinges on the same
observations on the assumption that s is safe and the hypothesis.

Lemma 115 (Argument-Parameter Substitution). For any P that does not contain program variables,
σ and σ′ such that σ′(~x) = J~eKσ it’s the case that

JR; Γ ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ) � JR; Γ ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ′)

Proof. First, we observe that by the interpretation of assertions, we can compute on the left hand side:

JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ)

= JR; Γ,~y : Val ` P : AssnK (ρ, γ, σ) ∗ JR; Γ,~y : Val ` (~e = ~y) : AssnK (ρ, γ, σ)

and then the right:

JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ′)

= JR; Γ,~y : Val ` P : AssnK (ρ, γ, σ′) ∗ JR; Γ,~y : Val ` (~x = ~y) : AssnK (ρ, γ, σ′)

Observing that

JR; Γ,~y : Val ` P : AssnK (ρ, γ, σ) = JR; Γ,~y : Val ` P : AssnK (ρ, γ, σ′)

since P does not refer to program variables, we now have an entailment of the shape R ∗ P � R ∗ Q,
so by Lemma 101 it suffices to show that:

JR; Γ,~y : Val ` (~e = ~y) : AssnK (ρ, γ, σ) � JR; Γ,~y : Val ` (~x = ~y) : AssnK (ρ, γ, σ′)

By another appeal to Lemma 101 it suffices to show that

JR; Γ,~y : Val ` ei = yi : AssnK (ρ, γ, σ) � JR; Γ,~y : Val ` xi = yi : AssnK (ρ, γ, σ′)

for each i. This follows easily by computation, which reveals that this indeed holds since � is reflexive:

JR; Γ,~y : Val ` ei = yi : AssnK (ρ, γ, σ)

= JeiKσ =Val γ(yi)

= JxiKσ′ =Val γ(yi)

= JR; Γ,~y : Val ` xi = yi : AssnK (ρ, γ, σ′)

and we are done.

Lemma 116 (Soundness of Function Call). Suppose that

Φ(f) = (Γ,~y){P}{r.Q}.

Then for any n ∈N, ρ ∈ JRK and γ ∈ JΓ,~y : ValK,

n ∈ JR; Φ; Γ,~y : Val ` {P ∗ (~e = ~y)} x:=f(~e) {∃r : Val.x = r ∗Q | r.U}K (ρ, γ).

Proof. Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ.

We now need to show that

safen(E, JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ),
σ,
x:=f(~e),
JR; Γ,~y : Val ` ∃r.x = r ∗Q : AssnK (ρ, γ),
λv. JR; Γ,~y : Val, r : Val ` U : AssnK (ρ, γ[r 7→ v])

30

We thus need to show Case 4 of Definition 104, where we take a regular execution step as the only
applicable rule is

E(f) = (~x, s) σ′(~x) = J~eKσ

E ` (σ, x:=f(~e))
id−→ (σ, x:=(σ′, s))

for some σ′ : Stack such that σ′(~x) = J~eKσ.
Hence s′ = x:=(σ′, s) and α = id. We now need to choose a suitable P′, such that

(a) JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ) � P′.

(b) safen−1(E, P′, σ, x:=(σ′, s)), J∃r.x = r ∗QK (ρ, γ), λv. JUK (ρ, γ[r 7→ v]))

We choose P′ := JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ′).
The statement (b) follows by appeal to Lemma 114, where the premise is obtained by instantiating

∀n′ < n.E � Φ at n− 1, giving us that s is safe to run from JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ′).
(b) is then immediate from the lemma.

(a) follows by Lemma 115.

Lemma 117 (Soundness of Value Return). For all n ∈N, ρ ∈ JRK, γ ∈ JΓK and assertion Q,

n ∈ JR; Φ; Γ ` {>} return e {Q | r.e = r} : SpecK (ρ, γ)

Proof. Suppose an environment E such that for all n′ < n, E �ρ
n′ Φ. Suppose furthermore a stack σ.

We need to show that

safen(E, Jdom(R); Γ ` > : AssnK (ρ, γ, σ)

σ,
return e,

λσ′. Jdom(R); Γ ` Q : AssnK (γ, σ′)

λσ′.λv. JR; Γ, r : Val ` e = r : AssnK (ρ, γ[r 7→ v], σ′))

We thus need to show that

Jdom(R); Γ ` > : AssnK (ρ, γ, σ) � JR; Γ, r : Val ` e = r : AssnK (ρ, γ[r 7→ JeKσ], σ)

which is immediate by calculation:

JR; Γ, r : Val ` e = r : AssnK (ρ, γ[r 7→ JeKσ], σ)

= JeKσ =Val JeKσ

which always holds.

Lemma 118 (Soundness of If). For all assertions P, Q, U, and for all n ∈N, γ ∈ JΓK and ρ ∈ JRhoK, if

1. n ∈ JR; Φ; Γ ` {P ∗ e 6= 0} s1 {Q | r.U}K (ρ, γ) and

2. n ∈ JR; Φ; Γ ` {P ∗ e = 0} s2 {Q | r.U}K (ρ, γ)

then

n ∈ JR; Φ; Γ ` {P} if(e) then {s1} else {s2} {Q | r.U}K (ρ, γ)

Proof. Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ.

We now need to show that

safen(E, Jdom(R); Γ ` P : AssnK (ρ, γ, σ),
σ,
if(e) then {s1} else {s2},
Jdom(R); Γ ` Q : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

31

Proceed by cases on the whether result of JeKσ is different from or equal to zero.
In either case we have to show Case 4 of Definition 104, where we take a regular execution step.
In the case where JeKσ 6= 0, there is only one applicable rule,

JeKσ 6= 0

E ` (σ, if(e) then {s1} else {s2})
id−→ (σ, s1)

Hence, we need to show that there is a P′ such that Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � P′ and

safen−1(E,P′,
σ,
s1,
Jdom(R); Γ ` Q : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

We chose P′ := Jdom(R); Γ ` P ∗ e 6= 0 : AssnK (ρ, γ, σ). To show the entailment, we compute on
both sides. First the right, exploiting that e does not refer to logical variables.

Jdom(R); Γ ` P ∗ e 6= 0 : AssnK (ρ, γ, σ) = Jdom(R); Γ ` P : AssnK (ρ, γ, σ) ∗ JeKσ 6=Val 0

Observing that > is unit to ∗, we can frame the interpretation of P away by Lemma 101, and it remains
to show that

> � JeKσ 6=Val 0

which holds as JeKσ 6= 0 by assumption.
The safety requirement on s1 follows precisely by the assumption on s1.
The case of JeK = 0 is analogous.

Lemma 119 (Soundness of Sequencing). For all n ∈N, if, for any γ ∈ JΓK and ρ ∈ JRK,
n ∈ JR; Φ; Γ ` {P} s1 {R | r.U} : SpecK (ρ, γ) n ∈ JR; Φ; Γ ` {R} s2 {Q | r.U} : SpecK (ρ, γ)

then

n ∈ JR; Φ; Γ ` {P} s1;s2 {Q | r.U} : SpecK (ρ, γ)

Proof. Proceed by induction: assume the lemma holds for all n′ < n. We now show it holds for n.
Suppose an environment E such that for all n′ < n.E �ρ

n′ Φ. Suppose further a stack σ. We now
need to show that

safen(E, Jdom(R); Γ ` P : AssnK (ρ, γ),
σ,
s1;s2,
Jdom(R); Γ ` Q : AssnK (ρ, γ),
λv. JUK (ρ, γ[r 7→ v]))

We case on whether s1 = skip, s1 = return e or not; whether to skip, return or step.

Skip If s1 = skip, we obtain from the first assumption that

Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � Jdom(R); Γ ` R : AssnK (ρ, γ, σ)

holds. We also observe that the only possible step is

E ` (σ, skip;s2)
id−→ (σ, s2)

We thus now need to show that there is a P′ : Assertion such that

(a) Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � P′

(b) safen−1(E, P′, σ, s2, Jdom(R); Γ ` Q : AssnK (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

We chose P′ := Jdom(R); Γ ` R : AssnK (ρ, γ, σ) and we have both by assumption.

32

Return If s1 = return e or return e;s′1, we obtain by assumption on s1 that

Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ JeKσ], σ)

which is precisely the requirement for

safen(E, Jdom(R); Γ ` P : AssnK (ρ, γ, σ), σ, return e;s2,
Jdom(R); Γ ` Q : AssnK (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

Forking Step If

E ` (σ, s1)
fork(f,~v)−−−−−→ (σ′, s1′)

we obtain by assumption on s1 variables and code (~x, s), assertions P and F′ such that

(a) E(f) = (~x, s)

(b) Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � P′ ∗ F

(c) safen−1(E, P′, σ′, s1′, Jdom(R); Γ ` Q : AssnK (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

(d) safen−1(E, F, [~x 7→ ~v], s, λ_.>, λ_.λ_.>)

Hence, the compound statement can step as follows:

E ` (σ, s1)
fork(f,~v)−−−−−→ (σ′, s′1)

E ` (σ, s1;s2)
fork(f,~v)−−−−−→ (σ′, s′1;s2)

and by the definition of safety we now have to show the existence of (~x, s) and P, F′ such that

(a) E(f) = (~x, s)

(b) Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � P′ ∗ F

(c) safen−1(E, P′, σ′, s′1;s2, Jdom(R); Γ ` Q : AssnK (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])

(d) safen−1(E, F, [~x 7→ ~v], s, λ_.>, λ_.λ_.>)

We choose precisely the givens obtained by the assumption s1. Items (a), (b) and (d) are thus given
directly. (c) follows by the induction hypothesis.

Non-Forking Step If s1 can step according to

E ` (σ, s1)
α−→ (σ′, s′1)

we obtain by assumption on s1 an assertion P′ such that

(a) α ρ {Jdom(R); Γ ` P : AssnK (ρ, γ, σ)}{P′}

(b) safen−1(E, P′, σ′, s′1, Jdom(R); Γ ` R : AssnK (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

That s1 can step implies that the compound statement can step according to

E ` (σ, s1)
α−→ (σ′, s′1)

E ` (σ, s1;s2)
α−→ (σ′, s′1;s2)

and hence we need to show the existence of P′ such that

(a) α ρ {Jdom(R); Γ ` P : AssnK (ρ, γ, σ)}{P′}

(b) safen−1(E, P′, σ′, s′1;s2, Jdom(R); Γ ` Q : AssnK (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

33

We chose P′ obtained before and get (a) immediately. (b) follows by the induction hypothesis.

Lemma 120 (Soundness of While). For all n ∈N, ρ ∈ JRK and γ ∈ JΓK, if

n ∈ JR; Φ; Γ ` {P ∗ e 6= 0} s {I | r.U}K (ρ, γ)

then

n ∈ JR; Φ; Γ ` {I} while(e){s} {I ∗ e = 0 | r.U}K (ρ, γ)

Proof. Proceed by Induction. Assume that the lemma as stated holds for all n′ < n. We now show it
holds for n.

Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ. We

now need to show that

safen(E, Jdom(R); Γ ` I : AssnK (ρ, γ, σ),
σ,
while(e){s},
Jdom(R); Γ ` I ∗ e = 0 : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])).

Proceed by cases on the whether result of JeKσ is different from or equal to zero. In either case we
have to show Case 4 of Definition 104, where we take a regular execution step.

Non-Zero In the case where JeKσ 6= 0, there is only one applicable rule,

JeKσ 6= 0

E ` (σ, while(e){s}) id−→ (σ, s;while(e){s})

Hence, we need to show that there is a P′ such that Jdom(R); Γ ` I : AssnK (ρ, γ, σ) � P′ and

safen−1(E,P′

σ,
s;while(e){s},
Jdom(R); Γ ` I ∗ e = 0 : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])).

We chose P′ := Jdom(R); Γ ` I ∗ e 6= 0 : AssnK (ρ, γ, σ). We thus need to show that

Jdom(R); Γ ` I : AssnK (ρ, γ, σ) � Jdom(R); Γ ` I ∗ e 6= 0 : AssnK (ρ, γ, σ)

Which follows knowing JeKσ 6= 0. Finally we need to show that

safen−1(E, Jdom(R); Γ ` I ∗ e 6= 0 : AssnK (ρ, γ, σ),
σ,
s;while(e){s},
Jdom(R); Γ ` I ∗ e = 0 : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])).

which precisely corresponds to showing that

n− 1 ∈ JR; Φ; Γ ` {I ∗ e 6= 0} s;while(e){s} {I ∗ e = 0 | r.U}K (ρ, γ)

We have by assumption on s that

n− 1 ∈ JR; Φ; Γ ` {I ∗ e 6= 0} s {I | r.U}K (ρ, γ)

and the induction hypothesis gives us

n− 1 ∈ JR; Φ; Γ ` {I} while(e){s} {I ∗ e = 0 | r.U}K (ρ, γ)

The two preceding statements are by the Soundness of Sequencing enough to give us precisely the
desired conclusion.

34

Zero In the case where JeKσ = 0, there is only one applicable rule,

JeKσ = 0

E ` (σ, while(e){s}) id−→ (σ, skip)

Hence, we need to show that there is a P′ such that JIK (ρ, γ, σ) � P′ and

safen−1(E,P′,
σ,
skip,
Jdom(R); Γ ` I ∗ e = 0 : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]).

We chose P′ := JI ∗ e = 0K (ρ, γ, σ), and the safety requirement holds by reflexivity of �. To show
the entailment we argue as in the the looping case: We can frame I on each side of the entailment by
Lemma 101, and it remains to show that

> � Jdom(R); Γ ` e = 0 : AssnK (ρ, γ, σ)

which always holds as JΓ ` e : ValK (γ, σ) = JeKσ when e is free of program variables, as here.

Lemma 121 (Soundness of Skip). For all assertions P and U and ρ ∈ JRK and γ ∈ JΓK, for all n ∈N,

n ∈ JR; Φ; Γ ` {P} skip {P | r.U} : SpecK (ρ, γ)

Proof. Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ.

We now need to show that

safen(E, Jdom(R); Γ ` P : AssnK (ρ, γ, σ)

σ,
skip,
Jdom(R); Γ ` P : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

which means we need to show that

Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � Jdom(R); Γ ` P : AssnK (ρ, γ, σ).

This follows by reflexivity of �.

Lemma 122 (Soundness of Local Assignment). For all n, ρ ∈ JRK, γ ∈ JΓK,

n ∈ JR; Φ; Γ ` {x = n} x := e {x = e[n/x] | r.U} : SpecK (ρ, γ).

Proof. Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ.

We now need to show

safen(E, Jdom(R); Γ ` x = n : AssnK (ρ, γ, σ),
σ,
x := e,
Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ),
λv. JUK (ρ, γ[r 7→ v])).

There is only one applicable transition,

E ` (σ, x := e)
id−→ (σ[x 7→ JeKσ], skip)

So we pick P′ := Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ, σ[x 7→ JeKσ]) and have to show that

35

(a) Jdom(R); Γ ` x = n : AssnK (ρ, γ, σ) � Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ, σ[x 7→ JeKσ])

(b) safen−1(E, Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ, σ[x 7→ JeKσ]), σ[x 7→ JeKσ], skip,
Jdom(R); Γ ` x = e[n/x] : Assn[n/x]K (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

(b) is immediate by Lemma 121.
(a) follows by computation; first on the left hand side:

Jdom(R); Γ ` x = n : AssnK (ρ, γ, σ)

⇐⇒ σ(x) =Val n

Then on the right hand side:

Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ, σ[x 7→ JeKσ])

⇐⇒ JeKσ =Val JΓ ` e[n/x] : ValK (γ, σ[x 7→ JeKσ)

Hence, by definition of semantic entailment, it suffices to show that, assuming σ(x) = n, for any
expression e and any value v it holds that

JeKσ =Val JΓ ` e[n/x] : ValK (γ, σ[x 7→ v])

We proceed by induction on the structure of e:

Constant If e = m, for a constant m, the result is immediate.

Variable If e = y for some program variable y, there are two cases: if x = y, we calculate

JΓ ` e[n/x] : ValK (γ, σ[x 7→ v]) = JΓ ` x[n/x] : ValK (γ, σ[x 7→ v])
= n
= σ(x)

= JxKσ

= JeKσ

as desired. If x 6= y we calculate

JΓ ` e[n/x] : ValK (γ, σ[x 7→ v]) = JΓ ` y[n/x] : ValK (γ, σ[x 7→ v])
= JΓ ` y : ValK (γ, σ[x 7→ v])
=σ(y)

= JyKσ

= JeKσ

Binary Operator If e = e1 ~ e2 for some binary operation, we can calculate as follows:

JΓ ` e : Val[n/x]K (γ, σ[x 7→ v]) = JΓ ` e1 ~ e2 : Val[n/x]K (γ, σ[x 7→ v])
= JΓ ` e1[n/x] : ValK (γ, σ[x 7→ v])~ JΓ ` e2 : Val[n/x]K (γ, σ[x 7→ v])
= Je1K (σ)~ Je2K (σ)
= Je1 ~ e2Kσ

= JeKσ

where the third equality holds by the induction hypotheses of e1 and e2.

36

Lemma 123 (Soundness of Frame). For any ρ ∈ JRK, γ ∈ JΓK and σ ∈ Stack, assuming mod(s)∩ F = ∅,
if

n ∈ JR; Φ; Γ ` {P} s {Q | r.U} : SpecK (ρ, γ, σ)

then

n ∈ JR; Φ; Γ ` {P ∗ F} s {Q ∗ F | r.U} : SpecK (ρ, γ, σ).

Proof. We proceed by strong induction on n. Suppose an n such that it lies in the interpretation
of R; Φ; Γ ` {P} s {Q | r.U} We now have to show that n lies in the interpretation of R; Φ; Γ `
{P ∗ F} s {Q ∗ F | r.U}, which we proceed to do so according to definition:

Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ. We

now need to show

safen(E, JR; Γ ` P : AssnK (ρ, γ, σ),
σ,
s,
JR; Γ ` Q : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

There are 4 cases, according to the definition of safe:

Skip If s = skip, then we must show that

id ρ {JR; Γ ` P ∗ F : AssnK (ρ, γ, σ)}{JR; Γ ` Q ∗ F : AssnK (ρ, γ, σ)}

but by the assumption on n, we also get that

id ρ {JR; Γ ` P : AssnK (ρ, γ, σ)}{JR; Γ ` Q : AssnK (ρ, γ, σ)}

By the semantics of assertions, the interpretation of assertions commutes with ∗, and we then have by
Lemma 101 precisely what we need to show.

Return This case is analogous to the case of skip.

Forking Step In this case, we assume that E ` (σ, s)
fork((,) f ,~v)−−−−−−−→ (σ′, κ′) for some f and ~v. We now

have to provide P′, F′ and (~x, s) such that

1. E(f) = (~x, s)

2. id ρ {JR; Γ ` P ∗ F : AssnK (ρ, γ, σ)}{P′ ∗ F′}

3. safen−1(E, P′, σ′, κ′, JR; Γ ` Q ∗ F : AssnK (ρ, γ), JUK)

4. safen−1(E, F, σ′, s, λ_.>, λ_.λ_.>)

By appeal to the assumption on n, we get precisely the pieces we need, however, we get that
id ρ {JR; Γ ` P : AssnK}{P′ ∗ F′}. Here, we instead of just P′, we chose P′ ∗ JR; Γ ` F : AssnK (ρ, γ, σ′),
our original frame. Hence, by Lemma 98 we get Item 2. Item 4 is then still immediate by assumption.
It remains to show Item 3, which now amounts to showing that

safen−1(E, P′ ∗ JR; Γ ` F : AssnK (ρ, γ, σ′), κ′, JQ ∗ FK (ρ, γ), JUK)

which we get by assumption on n combined with the induction hypothesis.

37

Non-Forking Step Analogous to the forking case without the complication of the forked thread.

Lemma 124. If for any σ, Q′(σ) � Q(σ) and safen(E, P, σ, s, Q′, U) then safen(E, P, σ, s, Q, U).

Proof. Proceed by strong induction on n.

Skip If s = skip, we must show P � Q(σ) knowing P � Q′(σ) by assumption. This follows by
transitivity of �.

Return If s returns some expression e, we must show P � U(σ)(JeKσ), but we get this immediately
by assumption.

Forking Step Here we must find assertions P′, F such that

1. P � P′ ∗ F

2. safen−1(E, P′, σ′, s′, Q, U)

3. safen−1(E, F, [~x 7→ J~eKσ], s,>,>)

We get the choice of assertions by the assumption on s, and Items 1 and 3 are immediate while Item 2
follows by the induction hypothesis.

Non-forking step Here we must find assertion P′ such that

1. α ρ {P}{P′}

2. safen−1(E, P′, σ′, s′, Q, U)

Both again follow immediately by assumption and the induction hypothesis.

Lemma 125 (Soundness of Consequence). For any ρ ∈ JRK, γ ∈ JΓK and σ ∈ Stack, we have that,
assuming

R; Γ | P ` P′ R; Γ | Q′ ` Q R; Γ | U′ ` U,

then for any n and γ ∈ JΓK, if

n ∈
q

R; Φ; Γ ` {P′} s {Q′ | r.U′} : Spec
y
(ρ, γ, σ)

then

n ∈ JR; Φ; Γ ` {P} s {Q | r.U} : SpecK (ρ, γ, σ)

Proof. We proceed according to the proof of the Soundness of Fork: by strong induction on n, and then
by case on the definition of safety.

In each case, we appeal Lemma 103 in order to weaken or strengthen the assertions involved as
needed, remarking that the assumed syntactic entailments give us e.g. JR; Γ ` P : AssnK (ρ, γ, σ) �
JR; Γ ` P′ : AssnK (ρ, γ, σ).

Again, the return and skipping cases are alike, so we show one. The same is true of the forking
and the non-forking case so we show the more complicated of the two.

Skip In the case of s = skip, we are to show that P � Q, knowing P′ � Q′, P � P′ and Q′ � Q,
which is directly the statement of Lemma 103.

38

Forking Step In the case that s = fork f(~e), we are to give an implementation (~x, s) and assertions
R and F such that

1. P � R ∗ F

2. safen−1(E, R, σ, s′, Q, U)

3. safen−1(E, F, [~x 7→ J~eKσ], s,>,>)

The choices of (~x, s), R and F are given by the assumption of the lemma. The first item follows
from transitivity of �, knowing P � P′ and P′ � R ∗ F. The remaining two items follow by assumption
with an appeal to Lemma 124.

Lemma 126 (Soundness of Fork). Assuming Φ(f) = (Γ,~y){P}{r.Q}, it is the case that, for all n, for all
ρ ∈ JRK, γ ∈ JΓK:

n ∈ JR; Φ; Γ,~y : Val ` {P ∗ (~e = ~y)} fork f(~e) {> | r.U} : SpecK (ρ, γ)

Proof. Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ.

We now need to show

safen(E, JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ),
σ,
fork f(~e),
JR; Γ,~y : Val ` > : AssnK (ρ, γ),
λv. JR; Γ,~y : Val, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

By case analysis of first the statement in question and then the operational rules, we see that the only
applicable case of safen is the case where

E ` (σ, fork f(~e))
fork(f,J~eKσ)−−−−−−−→ (σ, skip).

This means showing that there exists a P′, F and (~x, s) such that the following four items hold:

(a) E(f) = (~x, s).

(b) JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ) � P′ ∗ F

(c) safen−1(E, P′, σ, skip, JR; Γ,~y : Val ` > : AssnK (ρ, γ), λv. JR; Γ,~y : Val, r : Val ` U : AssnK (ρ, γ[r 7→
v])

(d) safen−1(E, F, [~x 7→ J~eKσ], s, λ_.>, λ_λ_.>)

By assumption that f is specified by Φ, we obtain (~x, s) that satisfy (a). We choose

P′ := > F := JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, [~x 7→ J~eKσ])

(c) follows easily: the interpretation J>K (ρ, γ, σ) for any arguments is >, and > � >, as required
by safety of skip. (d) follows from the assumption that E �ρ

n−1 Φ by appeal to weakening of the
conclusions: we can always weaken to >.

Left is (b), which follows precisely from 115.

Lemma 127 (Soundness of Allocation). For all ρ ∈ JRK, γ ∈ JΓK and σ, for any n it holds that

n ∈ JR; Γ ` {e = v ∗ v > 0} x := alloc(e) {∃n.x = n ∗ n 7→ [v] | r.U} : SpecK (ρ, γ, σ)

39

Proof. Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ.

We now need to show

safen(E, JR; Γ ` e = v ∗ v > 0 : AssnK (ρ, γ, σ),
σ,
x := alloc(e),
JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

According to the operational semantics, the allocation can either complete successfully or fault,
depending on whether e denotes a non-zero natural number.

If it does not, i.e. JeKσ < 1 it is the case that E ` (σ, x := alloc(e))
 −→ (σ, skip) and we have to

pick a P′ according to Case 4 of the definition of safen. We chose ⊥ and have to show:

1. ρ {JR; Γ ` e = v ∗ v > 0 : AssnK (ρ, γ, σ)}{⊥}

2. safen(E,⊥, σ, skip, JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→
v])

Item 2 is vacuously true as ⊥ � P holds of any P. To argue Item 1 we observe that any configuration
in the in the interpretation of e = v and v > 0 would contradict that v < 1, hence there are none.
Therefore, that interpretation is empty, and the inclusion required in Item 1 is empty. (The action of
faulting on a set of heaps is thus also irrelevant - the lifting of actions to sets of heaps preserve the
empty set).

If e > 0, it is the case that E ` (σ, x := alloc(e))
alloc(JeKσ ,n)
−−−−−−−−→ (σ[x 7→ n], skip) for some address n

and we thus need to find a P′, for which we pick the postcondition as stated in the lemma, such that

1. alloc(JeKσ , n) ρ {JR; Γ ` e = v ∗ v > 0 : AssnK (ρ, γ, σ)}{JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK
(ρ, γ, σ[x 7→ n])}

2. safen(E, JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ, σ[x 7→ n]), σ, skip,
JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ), λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])

Item 2 holds by the definition of safety of skip. To show the first item, we proceed directly by definition
of the semantic action judgment: suppose a stable frame, and suppose a heap h in the erasure of the
conjunction of said frame and JR; Γ ` e = v ∗ v > 0 : AssnK (ρ, γ, σ). For h we know that JeKσ = v and
v > 0, consistent with the assumption on e.

Any h′ in the result of applying the action of the allocation action would satisfy that m ∈ dom(h′)
if m is such that n <= m < n + (v− 1). This is ensured knowing v > 0.

Finally, we need to show that h′ lies in the erasure of JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ, σ[x 7→
n]). For this to be the case, there needs to be an n such n = n and n 7→ v is satisfied by the heap. This
is precisely the case for h′. Hence we are done.

Lemma 128 (Soundness of Atomic Embedding). Assuming
q

R; Γ ` [P] open [{(∆i).(P′i ,~ri)}]
y
(ρ, γ, σ)

and, for all i ∈ I and δi ∈ J∆iK,
r

R; Γ, ∆i `{~ri} 〈P
′
i 〉 s 〈Qi ∗ newRegion(~ni)〉

z
(ρ, γδi, σ)

JR; Γ, ∆i ` [Qi ∗ newRegion(~ni)] close(~ri,~ni) [Q]K (ρ, γδi, σ)

then for all n ∈N,

n ∈ JR; Φ; Γ ` {P} s {stabilize(Q) | r.U}K (ρ, γ, σ)

Proof. Assume

40

1.
q

R; Γ ` [P] open [{(∆i).(P′i ,~ri)}]
y
(ρ, γ, σ)

2.
r

R; Γ, ∆i `{~ri} 〈P
′
i 〉 s 〈Qi ∗ newRegion(~ni)〉

z
(ρ, γ · δi, σ)

3. For all i ∈ I, JR; Γ, ∆i ` [Qi ∗ newRegion(~ni)] close(~ri,~ni) [Q]K (ρ, γ · δi, σ)

Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ. Suppose further a stack σ. We

now need to show that

safen(E, JR; Γ ` P : AssnK (ρ, γ, σ),
σ,
s,
JR; Γ ` stabilize(Q) : AssnK (ρ, γ),
λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])).

Since s is atomic by Assumption 2, there is only the possibility that the code take a non-forking
step according to the operational semantics, one that immediately reaches the skip configuration.

Hence, we can only step according to

E ` (σ, s) α−→ (σ′, skip)

and we need to find a P′ such that

1. α ρ {JR; Γ ` P : Assn(ρ, γ, σ)K}{P′}

2. safen−1(E, P′, σ′, skip, JR; Γ ` stabilize(Q) : AssnK (ρ, γ), JUK)

We chose P′ := JR; Γ ` stabilize(Q) : AssnK (ρ, γ, σ′), and 2 is immediate. To show 1, assume a stable
frame R. We now need to argue that

JαK (bJPK (ρ, γ, σ) ∗ Rcρ∅) ⊆
⌊
Jstabilize(Q)K (ρ, γ, σ′) ∗ R

⌋ρ
∅

Suppose an abstract configuration (h, a) in JPK ∗ R. Hence, we can split (h, a) into p = (hP, aP) ·
(hR, aR) = r. By Assumption 1, we thus get an index i ∈ I, a δ ∈ J∆Ki and p′ ∈

q
P′i
y

and ~y ∈ J~riK and
an r′ such that (r, r′) ∈ Rely(ρ) and bp · rcρ∅ ⊆ bp

′ · r′cρ~y.
By Assumption 2 and since p′ = (hP′ , aP′) ∈ JPiK, we get (JαK (hP′), aP′) ∈ JQi ∗ newRegion(~ni)K
By Assumption 3 we thus get that there is a frame r′′ and assertion q ∈ JQK such that

b(JαK (hP′), aP′) · rc
ρ
~ri ,~ni
⊆ bq · r′′cρ∅.

By the transitivity of the rely relation, we know that r′′ is in the assertion R as R is stable, i.e. closed
under the rely relation.

Since this is shown for any configuration in JPK ∗ R we have that bJPK ∗ Rcρ∅ ⊆ bJQK ∗ Rcρ∅. It
remains to observe that Q ⊆ stabilize(Q) as remarked in Definition 95, and hence, by Lemma 101 we
get bJPK ∗ Rcρ∅ ⊆ bJstabilize(Q)K ∗ Rcρ∅ as desired.

9.1.2 Soundness of Atomic Statement Specifications

Lemma 129 (Soundness of Atomic Write). For all ρ ∈ R, γ ∈ Γ and σ,

JR; Γ `S 〈e1 7→ _〉 [e1] := e2 〈e1 7→ e2〉 : AtomicK (ρ, γ, σ)

Proof. There are two possible execution steps for the atomic write. If e1 does not denote a valid
address, the write does not succeed, and the code steps according to

E ` (σ, [e1] := e2)
 −→ (skip, σ)

and we have to argue that for any s ∈ JSK and stable frame R

J K (bJR; Γ ` e1 7→ _ : AssnK (ρ, γ, σ) ∗ Rcρs) ⊆ bJR; Γ ` e1 7→ e2 : AssnK (ρ, γ, σ) ∗ Rcρs

41

which is trivial as any heap satisfying the precondition will satisfy that Je1Kσ ∈ Addr, which is a
contradiction. There are hence no heaps satisfying the precondition, and the inclusion in the semantic
action judgment is thus vacuously satisfied.

Hence, there is only one transition allowed by the operational semantics. The code [e1] := e1 can
step according to

Je1Kσ ∈ Addr

E ` (σ, [e1] := e2)
write(Je1Kσ ,Je2Kσ)−−−−−−−−−−−→ (σ, skip)

We thus have to argue that the following holds for all s ∈ JSK and stable frames R:

Jwrite(Je1Kσ , Je2Kσ)K (bJR; Γ ` e1 7→ _ : AssnK (ρ, γ, σ) ∗ Rcρs) ⊆ bJR; Γ ` e1 7→ e2 : AssnK (ρ, γ, σ) ∗ Rcρs

We proceed according to definition. Suppose a stable frame R. And suppose a heap h in
bJe1 7→ _K (ρ, γ, σ) ∗ Rcρ∅. We now have to argue that Jwrite(Je1Kσ , Je2K)K (h) lies in
bJe1 7→ e2K (ρ, γ, σ) ∗ Rcρ∅. Since Je1Kσ is an address by assumption, we know that the heap update
is successful, and we know h[Je1Kσ 7→ Je2Kσ] is in the assertion JR; Γ ` e1 7→ e2 : AssnK (ρ, γ, σ) and
hence in its erasure.

Lemma 130 (Soundness of Atomic Read). For all ρ ∈ JRK, γ ∈ JΓK and σ,

JR; Γ `S 〈e = n ∗ n 7→ v〉 x := [e] 〈x = v ∗ n 7→ v〉 : AtomicK (ρ, γ, σ)

Proof. There are two possible transitions for an atomic write, depending on wether the expression e

denotes a valid address or not.
In the case that JeKσ 6∈ Addr, the code transitions according to

E ` (σ, x := [e])
 −→ (skip, σ)

and we have to argue that for any s ∈ JSK and stable frame R we have

J K (bJR; Γ ` e = n ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρs) ⊆ bJR; Γ ` x = v ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρs

which is trivial as any heap satisfying the precondition will satisfy that JeKσ ∈ Addr, which is a
contradiction. There are hence no heaps satisfying the precondition, and the inclusion in the semantic
action judgment is thus vacuously satisfied.

Hence, there is only one transition allowed by the operational semantics. The code x := [e] can
step as follows for some value v′:

JeKσ ∈ Addr

E ` (σ, x := [e])
read(JeKσ ,v′)
−−−−−−−→ (σ[x 7→ v′], skip)

Now it remains to show that
q
read(JeKσ , v′)

y
(bJR; Γ ` e = n ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρs) ⊆

bJR; Γ ` x = v ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρs

We proceed directly by definition of the semantic action judgment. Suppose a stable R, and suppose
further a heap h in bJR; Γ ` e = n ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρ∅. We know that h(JeKσ) = v, hence
v′ = v. Then, by the action interpretation, Jread(JeKσ , v)K (h) = {h}.

Hence it suffices to show that h ∈ bJR; Γ ` x = v ∗ n 7→ v : AssnK (ρ, γ, σ[x 7→ v])cρ∅.
By calculation, the semantics of the postcondition, it suffices to show that h satisfies that σ[x 7→

v](x) = v, which is trivially satisfied by h, and h(n) = v, which it does, as we know h(JeKσ) = v and
JeKσ = n.

Hence, h is in the erasure of that assertion.

42

Lemma 131 (Soundness of CAS). For all ρ ∈ JRK, γ ∈ JΓK and σ,

JR; Γ `S 〈e1 = a ∗ a 7→ v ∗ e2 = old ∗ e3 = new〉
x := CAS(e1,e2,e3)

〈(x 6= 0 ∗ v = old ∗ a 7→ new)∨(x = 0 ∗ v 6= old ∗ a 7→ v)〉K(ρ, γ, σ)

Proof. Whether the CAS operation succeeds or not is independent of whether the CAS operation
completes successfully or not. This depends on whether e1 denotes a legal address.

In the case that Je1Kσ 6∈ Addr, the code transitions according to

E ` (σ, x := CAS(e1,e2,e3))
 −→ (skip, σ)

and we have to argue that for any s ∈ S and stable assertion R

J K (bJR; Γ ` e1 = a ∗ a 7→ v ∗ e2 = old ∗ e3 = new : AssnK (ρ, γ, σ) ∗ Rcρs) ⊆

bJR; Γ ` (. . .) ∨ (. . .) : AssnK (ρ, γ, σ) ∗ Rcρs

which is trivial as any heap satisfying the precondition will satisfy that JeKσ ∈ Addr, which is a
contradiction. There are hence no heaps satisfying the precondition, and the inclusion in the semantic
action judgment is thus vacuously satisfied.

Hence, there is only one transition allowed by the operational semantics, namely that the CAS
operation completes. The code can step as follows for some value v′:

Je1Kσ ∈ Addr

E ` (σ, x := CAS(e1,e2,e3))
CAS(b,Je1Kσ ,Je2Kσ ,Je3Kσ)−−−−−−−−−−−−−→ (σ[x 7→ b], skip)

for some value b. We proceed in two analogous cases according to whether b = 0 - we show the
negative case in which the CAS succeeds.

We have to show that for any s ∈ JSK and stable frames R

JCAS(b, Je1Kσ , Je2Kσ , Je3Kσ)K (bJR; Γ ` e1 = a ∗ a 7→ v ∗ e2 = old ∗ e3 = new : AssnK (ρ, γ, σ) ∗ Rcρs) ⊆

bJR; Γ ` (. . .) ∨ (. . .) : AssnK (ρ, γ, σ) ∗ Rcρs

We proceed directly by definition of the semantic action judgment. Suppose a heap h that lies in
the initial assertion.

We know Je1Kσ ∈ Addr, and furthermore, we know that Je1Kσ ∈ dom(h). We also know that
h(Je1Kσ) = v. Hence, the interpretation of the heap effect depends on wether v = old or not. In this
case it must since we know by assumption that b 6= 0.

If it does, JCAS(Je1Kσ , Je2Kσ , Je3Kσ , b)K (h) = h[Je1Kσ 7→ Je2Kσ]. Hence, we need to show that,
knowing b 6= 0,

(h[Je1Kσ 7→ Je2Kσ], a) ∈

JR; Γ ` (x 6= 0 ∗ v = old ∗ a 7→ new) ∨ (x = 0 ∗ v 6= old ∗ a 7→ v) : AssnK (ρ, γ, σ[x 7→ b])

By the semantics of assertions, it is sufficient to demonstrate that it lies in one of the disjuncts, where
we obviously choose to show

(h[Je1Kσ 7→ Je2Kσ], a) ∈ JR; Γ ` x 6= 0 ∗ v = old ∗ a 7→ new : AssnK (ρ, γ, σ[x 7→ b])

We know b 6= 0, Je1Kσ = a and Je2Kσ = v, hence the three constraints are immeadiate.
The alternate case is analogous.

43

9.1.3 Soundness of Program Specifications

Lemma 132 (Soundness of Program Specifications). Given a well-typed program specification ` ~r;~f,
assume for each fi that, for all n ∈N,

n ∈
q
~r;
⌈
~f
⌉
` fi : FunctionSpec

y
.

Then,
q
`~r;~f : ProgramSpec

y
holds.

Proof. We are to show that, for any given n ∈N,
⌊
~f
⌋
�n
⌈
~f
⌉
.

By assumption, for every function spec fi = g(~x)(Γ,~y){P}s{r.Q}, for any n and γ ∈ JΓ,~y : ValK,
ρ ∈ JRK,

n ∈
q
~r;
⌈
~f
⌉

; Γ,~y : Val ` {P ∗ (~x = ~y)} s {∀r.Q | r.Q} : Spec
y
(ρ, γ).

This in particular means that for any E such that for any n′ < n we have E �ρ
n′
⌈
~f
⌉
, it holds for any

σ ∈ Stack that

safen(E, Jdom(R); Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ),
σ,
s,

λσ′. Jdom(R); Γ,~y : Val ` ∀r.Q : AssnK (ρ, γ, σ′),

λσ′.λv. Jdom(R); Γ,~y : Val, r : Val ` Q : AssnK (ρ, γ[r 7→ v], σ′))

This is precisely Definition 105, of environment/function spec agreement, and in summary we
have

∀E.E �ρ
n′
⌈
~f
⌉
⇒ E �ρ

n g : (Γ,~y){P}{r.Q}

Since we have this for every g ∈ dom(
⌈
~f
⌉
), we have that

∀E.E �ρ
n′
⌈
~f
⌉
⇒ E �ρ

n
⌈
~f
⌉

.

If we instantiate E to
⌊
~f
⌋

we obtain precisely⌊
~f
⌋
�ρ

n′
⌈
~f
⌉
⇒
⌊
~f
⌋
�ρ

n
⌈
~f
⌉

.

Since we have this for any n′ < n, and for any n, we can generalize to

∀n.(∀n′ < n.
⌊
~f
⌋
�ρ

n′
⌈
~f
⌉
)⇒

⌊
~f
⌋
�ρ

n
⌈
~f
⌉

which by induction lets us conclude
∀n.

⌊
~f
⌋
�ρ

n
⌈
~f
⌉

as desired.

Theorem 133 (Soundness of Program Logic). If `~r;~f : ProgramSpec is derivable in the program logic,
then

q
`~r;~f : ProgramSpec

y
holds.

44

	Introduction
	Syntax Summary
	Object Language
	Specification Language
	Spin Lock Example

	Syntax of Object Language
	Operational Semantics
	Assertion Logic
	Entailment Logic

	Specification Logic
	Specification Syntax
	Specification Rules
	Program Specification
	Function Specification
	Statement Specification
	Atomic Statement Specifications

	Model
	Interpretation
	Interpretation of Specifications

	Soundness
	Soundness of Specification Logic
	Soundness of Statement Specifications
	Soundness of Atomic Statement Specifications
	Soundness of Program Specifications

