
Context Logic and Tree Update∗

Cristiano Calcagno Philippa Gardner

Department of Computing
Imperial College

University of London

Uri Zarfaty

ABSTRACT
Spatial logics have been used to describe properties of tree-
like structures (Ambient Logic) and in a Hoare style to rea-
son about dynamic updates of heap-like structures (Separa-
tion Logic). We integrate this work by analyzing dynamic
updates to tree-like structures with pointers (such as XML
with identifiers and idrefs). Näıve adaptations of the Am-
bient Logic are not expressive enough to capture such local
updates. Instead we must explicitly reason about arbitrary
tree contexts in order to capture updates throughout the
tree. We introduce Context Logic, study its proof theory
and models, and show how it generalizes Separation Logic
and its general theory BI. We use it to reason locally about a
small imperative programming language for updating trees,
using a Hoare logic in the style of O’Hearn, Reynolds and
Yang, and show that weakest preconditions are derivable.
We demonstrate the robustness of our approach by using
Context Logic to capture the locality of term rewrite sys-
tems.

Categories and Subject Descriptors
D.2.4 [Software/Program verification]: Correctness proofs,
Formal methods, Validation; F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Logics of pro-
grams

General Terms
Languages, theory, verification

Keywords
tree update, Hoare Logic, contexts

1. INTRODUCTION
We study Hoare logics for reasoning about data update.

Hoare logics have been well-explored for heap update, from

∗A preliminary version of this work appeared in an informal
proceedings [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05, January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

the original work of Hoare based on first-order logic to the
recent work of O’Hearn, Reynolds and Yang [9, 12, 6], with
their emphasis on local reasoning using the Separation Logic.
Such Hoare reasoning has hardly been explored for other
data structures. We show that the techniques for reasoning
locally about heap update can be adapted to reason locally
about tree update (XML update). This adaptation was by
no means straightforward. Surprisingly, the Ambient Logic
for trees cannot be used as the basis for the Hoare triples,
since the weakest preconditions are not expressible. Instead,
we had to fundamentally change the way we reason about
structured data, using Context Logic to analyse both data
and contexts.

Data update typically identifies the portion of data to be
replaced, removes it, and inserts the new data in the same
place. This place of insertion is essential for reasoning about
updates. Context Logic has context application—data in-
sertion in a context—as its central construct, plus (adjunct)
connectives for reasoning hypothetically about data inser-
tion. This shift of perspective emerged from our study of
tree update, in particular realising that the Ambient Logic
could not directly describe tree insertion. Given the con-
ceptual nature of our context reasoning, we expect the same
approach to apply to a wide range of structured data.

In this paper, we provide a Hoare logic for reasoning lo-
cally about a simple imperative language for tree update,
using our Context Logic specialised to trees. We prove that
the weakest preconditions are derivable. We study the gen-
eral theory of Context Logics, providing a Hilbert-style proof
theory, forcing semantics and models. The Bunched Logic
(BI) of O’Hearn and Pym gives the general theory of Separa-
tion Logic. We show that BI can be obtained from Context
Logic by collapsing some of the structure. We prove sound-
ness of our proof theory with respect to the forcing seman-
tics. Calcagno and Yang have recently proved completeness,
by adapting Yang’s results for BI [11].

We also adapt our Hoare logic reasoning about trees to
heap update and term rewriting. Our reasoning about heap
update corresponds precisely to O’Hearn et al.’s reasoning
using Separation Logic, as one would expect since heap
contexts are simple. Our reasoning about term rewriting
demonstrates the robustness of our approach1. Although
terms in rewrite systems can be seen as special cases of
trees, there is a crucial difference: terms over a signature
do not decompose as a composition of subterms, due to the
fixed arity of function symbols. They do however decompose

1Many thanks to Peter O’Hearn for suggesting this open
problem.

nicely as context/subtree pairs. This example demonstrates
the fundamental importance of contexts for reasoning locally
about structured data.

Heap Update
O’Hearn and Reynolds have introduced a style of Hoare logic
for imperative programs consisting of small local axioms,
which specify properties about the portion of the heap ac-
cessed by a command, and a frame rule, which uniformally
extends the reasoning to properties about the rest of the
heap. The impact of their approach is that the resulting
Hoare logic is very simple, and has been applied to several
problems—such as pointer arithmetic, concurrent impera-
tive programs and passivity—which escaped reasoning in the
traditional Hoare-logic style. Their primary innovation was
to base their Hoare logic on the Separation Logic, consisting
of standard first-order connectives and additional formulae
for directly analysing the heap structure. In particular, two
key logical constructs are the separating conjunction ∗ for
describing disjoint properties about the heap and used to
formulate the frame rule, and its adjoint −∗ for analysing
extensions of the heap and used to express the weakest pre-
conditions.

Consider the heap update command [n] = v, which up-
dates address n in the heap with value v. The corresponding
small axiom for this command is

{n 7→ −} [n] = v {n 7→ v}

The precondition states that the heap consists of one cell
with address n and an unspecified value, and the postcondi-
tion states that the cell now has value v. This small axiom
only describes properties about the specific cell n. To ex-
tend to properties about a larger heap, we use the frame
rule to derive the triple

{P ∗ (n 7→ −)} [n] = v {P ∗ (n 7→ v)}

The assertion P ∗ (n 7→ −) states that the heap can be split
disjointedly into the cell n with an arbitrary value (the or-
dering of cells does not matter), and the rest of the heap
with property P which is unaffected by the update com-
mand. The postcondition therefore has the same structure,
with the now updated cell n and the rest of the heap satis-
fying P .

The small axioms and frame rule are elegant, and intu-
itively express the behaviour of commands. In addition, the
weakest preconditions are derivable, a natural requirement
which is essential for providing verification tools. The weak-
est preconditions use assertions of the form R −∗ Q, which
states that whenever a heap is extended by a heap satisfy-
ing R then the resulting heap satisfies Q. For example, the
formula (n 7→ v)−∗ Q states that, whenever the heap is ex-
tended by a cell with address n and value v, then property
Q must hold. This formula is used to define the weakest
precondition of our update command:

{((n 7→ v)−∗ Q) ∗ (n 7→ −)} [n] = v {Q}

The precondition states that the heap can be split into the
cell n with unspecified value and the rest of the heap which,
when extended by a cell n with specific value v, satisfies
property Q.

Tree Update
We apply this style of Hoare logic reasoning about heap
update to tree update. It is possible to describe analogous
small axioms and frame rule using (an adaptation of) the
Ambient Logic. In order to derive the weakest preconditions
however, we must work with Context Logic, as we illustrate
in Section 5.

Consider the following picture of a tree, the corresponding
XML format and the syntactic description we use in this
paper:

a
m:∅

bn1:@n2

T1

b
n2:∅

T2

am:∅[bn1:@n2[T1] | bn2:∅[T2]]

XML format:

<b ID=n1 IDREF=n2>

T1

<b ID=n2>

T2

The structure highlights the unique node addresses (XML
identifiers) and the arbitrary cross-links (pointers, XML idrefs),
and is similar to the trees studied in [1] except that we per-
mit dangling pointers. In [4], Gardner et al. use the Ambient
Logic to specify static properties of such trees: the verti-
cal path structure (path expressions), the horizontal struc-
ture (XML schema) and properties about pointers (types for
XML idrefs). Here we reason about tree update.

Consider an update command for trees [n] = T , which
replaces the subtree at address n with the tree T . The small
axiom for this command is

{an:v[true]} [n] = T {an:v[T]}

The precondition states that the tree consists of a top node
identified by address n with value v and an unspecified sub-
tree. The postcondition says that the subtree has been re-
placed by T . In order to extend the small axiom to triples
stating properties about larger trees, we use a generalised
frame rule based on context application to derive the triple

{K(an:v[true])}[n] = T {K(an:v[T])}

The precondition states that the tree can be split disjoint-
edly into a tree with top node an:v, and a context satisfying
context formula K which is unaffected by the update com-
mand. The postcondition therefore has the same structure,
with the subtree at address n updated.

To specify the weakest precondition, we use a context
adjunct P . Q which describes a property about contexts:
whenever a tree satisfying P is placed in the context hole,
then the resulting tree satisfies Q. For example, the adjoint
an:v[T].Q states that, whenever a tree with address n, value
v and subtree T is placed in the context hole, then the prop-
erty Q must hold. The weakest precondition of our update
command is:

{(an:v[T] . Q)(an:v[true])} [n] = T {Q}

The precondition says that the tree can be split into a sub-
tree with top node an:v, and a context which satisfies Q
when tree an:v[T] is put in the hole. Again, this triple is
derivable.

In contrast, we believe that it is not possible to express
such weakest preconditions using (a minor adaptation of)
the Ambient Logic to the trees-with-pointers model. We can
prove that the Ambient Logic cannot express the weakest
preconditions without some form of recursion. The some-
where modality does provide a limited form of context rea-
soning, but in Section 5 we illustrate that this reasoning
is not enough to describe the parametric weakest precondi-
tions. It remains future work to pin down this inexpressivity
result.

2. TREE DATA MODEL
We present a data model for semi-structured data (XML)

based on Cardelli, Gardner and Ghelli’s trees-with-pointers
model [4] (see also [2]). Our formalism integrates the sim-
ple tree structure of Cardelli and Gordon’s ambient calcu-
lus [5] with the pointer structure of heaps. In particular,
it permits dangling pointers, which are essential for local
reasoning about such linked structures.

Trees with Pointers
Our trees-with-pointers model consists of a labelled tree
structure with uniquely identified nodes, unstructured data
(values, text) and graphical links (pointers) between nodes.
Node identifiers allow us to update trees locally, while point-
ers allow us to model arbitrary graph structures. We also
define linear contexts, which are trees with a unique hole2.
Given infinite sets of names n ∈ N and labels a ∈ A, the
sets of values, trees and contexts are defined in Figure 1.
The insertion of a tree T in a context C, denoted C(T), is
defined in the standard way. A well-formed tree or context
is one where the node identifiers are unique. Note that com-
position, node formation and tree insertion are partial when
restricted to well-formed trees.

The structural congruence ≡ between trees is the small-
est congruence on trees which satisfies axioms (i)-(iii) in
Figure 1. This corresponds to tree isomorphism under a
multiset interpretation. We trivially extend this to a struc-
tural congruence on contexts using axioms (iv)-(vi). Note
that the result is also a congruence with respect to tree in-
sertion: that is, C1(T1) ≡ C2(T2) whenever C1 ≡ C2 and
T1 ≡ T2. The definitions of well-formed trees and contexts
are consistent with respect to structural congruence.

3. TREE UPDATE LANGUAGE
We present a core update language for directly manipu-

lating trees with pointers. The language is simple, yet ex-
pressive enough to illustrate the subtleties of tree update.
The atomic commands are similar to the basic operations
for XML update studied in [10]. Our core language serves
as a starting point for a full update language for XML.

Variables and Expressions
Our data storage model resembles that of traditional imper-
ative languages, except that trees are first-class objects. It
consists of two components: a working tree T (analogous to
a heap) and a store s. The latter is a finite partial func-
tion defined on both ‘tree variables’, which are mapped to

2We believe it is routine to adapt the results presented in
this paper to multi-holed contexts. We limit ourselves to
linear contexts, since these are enough to derive our weakest
preconditions.

trees, and ‘value variables’, which are mapped to values (see
Figure 2). This approach allows us to break down complex
operations, such as moving and copying trees, into smaller
ones that deal with only one area of the working tree at a
time and can hence be analysed locally.

We employ two types of expressions in our update lan-
guage: tree expressions and value expressions. Tree expres-
sions are just tree variables, since these are enough to present
our ideas. In fact, our results hold for more complex tree ex-
pressions, such as those for describing path-based reasoning.
Value expressions consist of value variables or constants.
Both forms of expressions are determined by valuations [[E]]s
on the store s, as shown in Figure 2.

Commands
The core system consists of a simple imperative program-
ming language for altering state, with assignment, lookup,
update, new and disposal commands:

C ::=

tree operations value operations

x = ET u = EV assignment

x = [EV]T u = [EV]V lookup

[EV]T += FT [EV]V = FV update

u = new a at EV new

dispose EV dispose

These commands are split into tree operations and value
operations. Assignment, lookup and update have closely re-
lated tree and value forms. Assignment assigns to a variable
x or u the value of an expression ET or EV ; lookup assigns
to x or u the tree or value at the location specified (as a
pointer) by the value of EV ; and update goes to the loca-
tion specified by EV and either appends to the subtree there
the value of FT , or replaces the value there by the value of
FV . We chose to append in the case of tree updates as it is a
natural operation on trees which, together with appropriate
disposal, can express tree replacement.

The new command creates a new tree node, with label a, a
fresh identifier, the nil value and an empty subtree, appends
the node to the subtree at the location specified by EV , and
assigns to u a pointer back to the newly created identifier.
The dispose command deletes the tree specified by EV .

The complete operational semantics of the commands is
given in Figure 3, and is similar to the operational seman-
tics for updating heaps given in [12]. It uses an evaluation
relation ; defined on configuration triples C, s, t, terminal
states s, t, and faults. Note that the specification of the se-
mantics requires contexts C to isolate the subtrees affected
by the commands. The diagram below illustrates the be-
haviour of some of the commands on a simple tree of the
form an:v[T], with arrows pointing to the results:

an:v

T

an:v′

T

[@n]V = v
′

value update

dispose @n

disposal

an:v

T T
′

[@
n
] T

+
=

T
′

tre
e up

da
te

an:v

T
b
m:∅

u
=

new
b at @

n

new
u = @m

values V ::= nil
@n

data

null value
a pointer
data

Structural congruence

trees T ::= 0
an:V [T]

T |T

empty tree
node: label a, name n, value V
composition of trees

(i) T1 | T2 ≡ T2 |T1

(ii) T | 0 ≡ T
(iii) T1 | (T2 |T3) ≡ (T1 |T2) |T3

contexts C ::= −
an:V [C]

C |T
T |C

empty context
node: label a, name n, value V
right-composition with tree
left-composition with tree

(iv) C |T ≡ T |C
(v) C | 0 ≡ C
(vi) C | (T1 |T2) ≡ (C | T1) |T2

Figure 1: Data Model

tree variables VarT = {x, y, . . . }
value variables VarV = {u, v, . . . }

tree expressions ET ::= VarT
value expressions EV ::= VarV | V

stores s ∈ (VarT ⇀fin T)× (VarV ⇀fin V) valuations [[E]]s : [[x]]s = s(x)
[[u]]s = s(u)
[[V]]s = V

Figure 2: Variables and Expressions

The lookup, update and dispose commands rely on the ex-
pression EV evaluating to a pointer which identifies a node
in the working tree3. If it does not, they will fault. A dif-
ferent error occurs when the tree update operation tries to
insert a tree with a node identifier that clashes with one al-
ready in the working tree. In this case, the rule diverges,
returning no result. This choice to diverge rather than fault
is necessary in order to keep the command local (see Sec-
tion 5). In fact, our current choice of update is somewhat
unnatural, precisely because of its dependence on the global
state of the tree. A more realistic update operation is to
rename the node identifiers of the tree being inserted with
fresh identifiers. Our simpler operation is enough for this
paper.

Example Program
We present a simple program delink that takes a pointer
from a given location, and collapses it by moving its target
to that location:

delink(EV) , u = [EV]V ;
x = [u]T ;
dispose u;
[EV]T += x;
[EV]V = nil

3Well-formedness of the working tree ensures that the
pointer target is always unique.

The diagram below illustrates the behaviour of the program
on the sample tree given in the introduction:

a
m:∅

bn1:@n2

T1

b
n2:∅

T2

delink(@n1)

a
m:∅

b
n1:∅

T1

b
n2:∅

T2

Note that the program would also yield a result if the pointer
referred to a subtree inside T1, but would clearly fault if the
pointer referred back to the top node. In Section 5, we show
how our program reasoning copes quite naturally with these
different cases.

4. CONTEXT LOGIC
In [4], Gardner et al. amalgamated ideas from the Ambi-

ent Logic and Separation Logic to provide a logic for analysing
the trees-with-pointers model. In Section 5, we show that
this logic is not expressive enough to describe the weakest
preconditions for our update language. This observation led
to Context Logic. Beginning with a concrete application,
we first introduce the Context Logic specialised to analyse
our trees. We then study the general theory of Context
Logic, providing the proof theory, models and completeness
results. We also show how to collapse its structure to ob-
tain the Bunched Logic of O’Hearn and Pym as a special
instance. In Section 5, we show that the Context Logic for
the trees-with-pointers model is indeed expressive enough to
describe weakest preconditions.

[[ET]]s ≡ T ′

x = ET , s, T ; [s|x← T ′], T

[[EV]]s = V

u = EV , s, T ; [s|u← V], t

[[EV]]s = @n T ≡ C(an:V [T ′])

x = [EV]T , s, T ; [s|x← an:V [T ′]], T

[[EV]]s = @n T ≡ C(an:V [T ′])

u = [EV]V , s, T ; [s|u← V], T

[[EV]]s = @n T ≡ C(an:V [T ′]) [[FT]]s ≡ T ′′ C(an:V [T ′ |T ′′]) well-formed

[EV]T += FT , s, T ; s, C(an:V [T ′ | T ′′])

[[EV]]s = @n T ≡ C(an:V [T ′]) [[FV]]s = V ′

[EV]V = FV , s, T ; s, C(an:V ′ [T ′])

[[EV]]s = @m T ≡ C(bm:V [T ′]) n /∈ Free Names(T)

u = new a at EV , s, T ; [s|u← @n], C(bm:V [T ′ | an:nil[0]])

[[EV]]s = @n T ≡ C(an:V [T ′])

dispose EV , s, T ; s, C(0)

[[EV]]s 6= @n ∨ T 6≡ C(an:V [T ′]))

x = [EV]T u = [EV]V
[EV]T += FT [EV]V = FV

u = new a at EV dispose EV

9

=

;

, s, T ; fault

C1, s, T ; C
′
1, s

′, T ′

(C1; C2), s, T ; (C′
1; C2), s′, T ′

C1, s, T ; s′, T ′

(C1; C2), s, T ; C2, s′, T ′

C1, s, T ; fault

(C1; C2), s, T ; fault

[s|x← v] means the partial function s overwritten with s(x) = v

Figure 3: Operational Semantics

4.1 A Context Logic for Trees
The Context Logic for analysing trees with pointers con-

sists of tree assertions denoted by P , and context assertions
denoted by K. In each case, these include standard asser-
tions from classical first-order logic, novel structural asser-
tions for analysing the tree and context structure, and spe-
cialised assertions associated with our tree model: basic tree
and context assertions, and quantification over the variables
of our update language:

P ::= K(P) | K � P structural assertions
0 | ET | EV = EV basic assertions
P ⇒ P | false classical assertions
∃x.P | ∃u.P | ∃a.P | ∃n.P quantifiers

K ::= P � P structural assertions
− | an:EV

[K] | P |K basic assertions
K ⇒ K | False classical assertions
∃x.K | ∃u.K | ∃a.K | ∃n.K quantifiers

The full semantics is given in Figure 4 by two satisfaction
relations: the judgement s, T �T P says that the tree as-
sertion P holds for a given store and tree, while judgement
s, C �K K states that the context assertion K holds for a
given store and context.

The key assertions are the structural assertions K(P),
K �P and P �Q. The application assertion K(P) specifies
that a tree can be split into a context satisfying K applied
to a subtree satisfying P . The other two assertions are both
(right) adjoints of application. The assertion K � P is ad-
joint to K(−). It is satisfied by a given tree if, whenever we
insert the tree into a context satisfying K, then the result
satisfies P . We shall see that this adjoint is analogous to the
magic wand of Separation Logic, and the composition and
branch adjoints of the Ambient Logic. Meanwhile P � Q is
adjoint to −(P) and is therefore a statement on contexts. It

is satisfied by a given context if, whenever we insert in the
context a tree satisfying P , then the result satisfies Q. Note
that this assertion has no analogue in a näıve adaptation
of the Ambient Logic, and provides much of the power of
our context approach. It does however correspond to the
magic wand of Separation Logic, as the context structure
collapses in the heap case. It is used throughout the pa-
per and is essential for expressing weakest preconditions for
update commands.

The basic tree assertions are specific to our tree appli-
cation. They consist of the empty tree 0, the assertion
ET which holds whenever the working tree has the same
value as ET (up to structural congruence), and the asser-
tion EV = FV which holds when the values of the expressions
are equal. The basic context assertions consist of the empty
context ‘−’ and two basic context connectives: the subtree
context an:EV

[K], satisfied by the context an:[[EV]]s[C] for
some C satisfying K, and the parallel context P |K, satisfied
by a tree satisfying P in parallel with a context satisfying
K.

For ease of reading, we often write P |Q and an:v[P] in-
stead of (P | −)(Q) and (an:v[−])(P). This causes no ambi-
guity.

Auxiliary Definitions
We use the standard derived classical connectives and quan-
tifiers for both trees and contexts: ¬P , true, P ∧ P , P ∨ P
and ∀ • . P , where • is x, u, a or n. (For contexts we write
True rather than true.) We also use the derived tree equality
ET = FT , which is satisfied whenever the two tree expres-
sions have the same value:

ET = FT , true | ((ET � FT)(0) ∧ 0)

s, T �T K(P) iff ∃C, T ′ s.t. T ≡ C(T ′),
s, C �K K and s, T ′ �T P

s, T �T K � P iff ∀C1(s,C1 �K K and
C1(T) well-formed ⇒ s, C1(T) �T P)

s, T �T 0 iff T ≡ 0

s, T �T ET iff T ≡ [[ET]]s

s, T �T EV = FV iff [[EV]]s = [[FV]]s

s, T �T P ⇒ Q iff s, T �T P implies s, T �T Q

s, T �T false never

s, T �T ∃x.P iff ∃T ′ s.t. [s|x 7→ T ′], T �T P

s, T �T ∃u.P iff ∃V s.t. [s|u 7→ V], T �T P

s, T �T ∃a.P iff ∃ a′ ∈ A s.t. s, T �T P [a′/a]

s, T �T ∃n.P iff ∃n′ ∈ N s.t. s, T �T P [n′/n]

s, C �K P � Q iff ∀T1(s, T1 �T P and
C(T1) well-formed ⇒ s, C(T1) �T Q)

s, C �K − iff C ≡ −

s, C �K an:EV
[K] iff ∃C′ s.t. C ≡ an:[[EV]]s[C

′]
and s, C′ �K K

s, C �K P |K iff ∃T, C′ s.t. C ≡ T |C′,
s, T �T P and s, C′ �K K

s, C �K K1 ⇒ K2 iff s, C �K K1 implies s,C �K K2

s, C �K False never

s, C �K ∃x.K iff ∃T s.t. [s|x 7→ T], C �K K

s, C �K ∃u.K iff ∃V s.t. [s|u 7→ V], C �K K

s, C �K ∃a.K iff ∃ a′ ∈ A s.t. s, C �K K[a′/a]

s, C �K ∃n.K iff ∃n′ ∈ N s.t. s,C �K K[n′/n]

Figure 4: Semantics of Formulas

A useful property of equality assertions for values and trees
is their context-insensitivity:

K((ET = FT) ∧Q) ⇔ (ET = FT) ∧K(Q)
K((EV = FV) ∧Q) ⇔ (EV = FV) ∧K(Q)

We say that an assertion is exact if it is satisfied by at most
one tree or context for any given store. The following useful
property is reversible whenever P is exact.

(P � Q)(P)
always
−−−−→←−−−−−
exact P

Q ∧ True(P)

4.2 General Theory of Context Logic
In this section, we develop the underlying general theory

of Context Logic, giving the proof theory, the models and
the forcing semantics. We give soundness and completeness
results. Finally, we compare our Context Logic with the
Bunched Logic of O’Hearn and Pym.

For the purpose of this paper, we deal only with boolean
Context Logics, where the law of excluded middle holds.

Definition 1 (Context Logic Assertions). Context
Logic consists of a set of data assertions and a set of context
assertions, described by the grammars:

data assertions
P ::= K(P) | K � P structural assertions

P ⇒ P | false additive assertions

context assertions
K ::= I | P � P structural assertions

K ⇒ K | False additive assertions

Definition 2 (Proof Theory). The Hilbert-style proof
theory for Context Logic consists of the standard axioms and
rules for the additive assertions plus those for the structural
assertions given in Figure 5.

Definition 3 (Model). A model M for Context Logic
is given by two sets, K and D, with a partial application
function app : K×D ⇀ D and a nonempty set I ⊆ K that
acts as a left identity:

∀d ∈ D.app(I, {d}) = {d}

where app is extended to sets in the obvious way.

The forcing semantics for the structural assertions with
respect to a model M is also given in Figure 5, using two
satisfaction relations M, c �K K and M, d �D P . The se-
mantics for both sets of additive connectives is standard.

Theorem 4 (Soundness and Completeness). The proof
theory is sound and complete with respect to the forcing se-
mantics: that is,

K `K K′ ⇔ (M, K �K K′ for all models M)
P `D P ′ ⇔ (M, P �D P ′ for all models M)

where M, K �K K′ ⇔ ∀c ∈ K.M, c �K K ⇒ M, c �K K′

and M, P �D P ′ ⇔ ∀d ∈ D.M, d �D P ⇒ M, d �D P ′

when M = (K,D, app, I).

Proof. Soundness follows by easy induction on the deriva-
tion of K `K K′ and P `D P ′ respectively. Completeness
requires techniques based on maximally consistent sets of
formulas and bisimulation, recently developed in [11].

Context Logic with Zero
A natural assertion to add is the zero assertion 0, corre-
sponding to the empty heap assertion in Separation Logic
and the empty tree assertion in the Ambient Logic. We
shall however see that this extra assertion is not present in
the term rewriting case. When it is present, the zero asser-
tion allows us to derive extra structure: specifically, K(0)
is a projection from contexts onto data, and 0 � P is an
(adjoint) embedding in the other direction.

Definition 5 (Context Logic Assertions with Zero).
The Context Logic with Zero consists of data and context
assertions as in Definition 1, with an additional data asser-
tion 0.

Definition 6 (Proof theory with Zero). The proof
theory for Context Logic with Zero extends Figure 5 with the
following axioms:

(0 � P)(0) a`D P ¬(0 � P) a`K 0 � ¬P

I a`K 0 � 0

It is simple to check that these axioms hold in our concrete
tree model. We give further explanation after we introduce
the models.

P a`D I(P)

K1 `K K2 P1 `D P2

K1(P1) `D K2(P2)

K(P1) `D P2

K `K P1 � P2

K `K P1 � P2 P `D P1

K(P) `D P2

K(P1) `D P2

P1 `D K � P2

P1 `D K � P2 K1 `K K

K1(P1) `D P2

M = (K,D, app, I)

M, d �D K(P) iff ∃c ∈ K, d′ ∈ D. s.t. app(c, d′) = d,
M, c �K K and M, d′ �D P

M, d �D K � P iff ∀c ∈ K.(M, c �K K and
app(c, d) defined ⇒M, app(c, d) �D P)

M, c �K I iff c ∈ I
M, c �K P1 � P2 iff ∀ d ∈ D.(M, d �D P1 and

app(c, d) defined ⇒M, app(c, d) �D P2)

Figure 5: Context Logic Proof Theory and Forcing Semantics

Definition 7 (Model with Zero). A model M for
Context Logic with Zero is a model (K,D, app, I) for Con-
text Logic with an additional set 0 ⊆ D, and a relation
Rapp ⊆ K×D defined by

(c, d) ∈ Rapp ⇔ d ∈ app(c,0)

which satisfies the following conditions:

(i) Rapp is a total surjective function K→ D;

(ii) Rapp

−1(0) = I.

The first Axiom in Definition 6 implies that Rapp is surjec-
tive, and the second implies that it is a total function. The
third axiom corresponds to condition (ii).

Notice that the action of Rapp on sets of contexts is rep-
resentable as an operator −p : K 7→ K(0). The inverse rela-
tion is also representable, as the operator −e : P 7→ (0�P).
Using this derived notation, we can give a new reading to the
axioms in the proof theory. The first axiom becomes P ep a
`D P , and implies that (−e,−p) is an embedding-projection
pair. The second axiom becomes ¬(P e) a`K (¬P)e, and
says that the embedding preserves and reflects negations,
or equivalently that −e has a right adjoint ¬((¬−)p). The
third axiom becomes I a`K 0e, and says that 0 embeds to
I.

Definition 8 (Forcing semantics with Zero). The
forcing semantics for Context Logic with Zero extends Fig-
ure 5 with

M, d �D 0 iff d ∈ 0

Theorem 9 (Soundness and Completeness with Zero).
The proof theory for Context Logic with Zero is sound and
complete with respect to the forcing semantics with Zero.

Using the derived embedding/projection notation, there is a
natural way to define a structural operation − ∗ − on data:
an embedding followed by an application. The definition of
∗ and its two right adjoints (fixing either argument) is as
follows:

P ∗Q , P e(Q)

P ∗− Q , P e
� Q

P −∗ Q , ¬((¬(P � Q))p)

Lemma 10 (Adjoints). P∗−− and P−∗− are the right
adjoints of P ∗ − and − ∗ P , respectively.

Proof. The former is immediate since K � − is right
adjoint of K(−). The latter follows from the adjunction
properties of � and −e, together with excluded middle and
the second axiom in Definition 6.

Lemma 11 (Unit). P ∗ 0⇔ P ⇔ 0 ∗ P

Proof. The left logical equivalence follows immediately
from the first axiom in Definition 6. The right one follows
from the third axiom and I being the left identity of appli-
cation.

However, ∗ does not have a monoid structure in general.
This is exemplified in the tree model: P ∗Q holds of a tree if
it can be decomposed into a context whose underlying tree
satisfies P , and a tree satisfying Q. Therefore ∗ is neither
commutative nor associative. Moreover, the interpretation
of ∗ in the tree model is a relation R ⊆ (D×D)×D, rather
than a partial function.

Comparison with BI
The Bunched Logic of O’Hearn and Pym [8] is a special case
of Context Logic, where the two sets of assertions are iden-
tical, application corresponds to −∗−, the two adjoints are
the same due to the commutativity of ∗, and I corresponds
to 0. We formalise the correspondence. When the model M
comes from a BI model4, then our derived ∗-connective coin-
cides with BI’s ∗-connective. Moreover, in these BI models,
the Context Logic is exactly as expressive as BI.

Theorem 12 (Collapse to BI). For each data formula
P , there exists an equivalent BI formula5 φ: that is, M, true �D

(P ⇔ φ) whenever M comes from a BI model.

Proof. The translation |P | of data assertions into the
fragment φ is defined using a similar translation |K| for
context assertions, which are mapped to their projections
Kp.

|K(P)| = |K| ∗ |P |
|K � P | = |K| −∗ |P |
|true| = true

|P ⇒ Q| = |P | ⇒ |Q|

|I| = 0
|P � Q| = |P | −∗ |Q|
|True| = true

|K1 ⇒ K2| = |K1| ⇒ |K2|

Equivalence can be shown using an extended proof theory
for BI models.

In this section, we have concentrated on a specific presen-
tation of boolean Context Logic. We are currently working
on the categorical semantics and completeness for several
variants of the logic, where context composition and the
embedding/projection pair described here play a prominent
role. This work will appear in a future paper.

4That is, both K and D being the underlying set of the BI
monoid, with app and I the binary operation and unit.
5A formula in the fragment φ ::= 0 | φ ∗ φ | φ −∗ φ | φ ⇒
φ | false.

{(x = x0) ∧ 0} x = ET {(x = ET [x0/x]) ∧ 0}

{(u = u0) ∧ 0} u = EV {(u = EV [u0/u]) ∧ 0}

{(EV = @n) ∧ (x = x0) ∧ (an:v[true] ∧ y)} x = [EV]T {(EV [x0/x] = @n) ∧ (x = y) ∧ (an:v[true] ∧ y)}

{(EV = @n) ∧ (u = u0) ∧ an:v[y]} u = [EV]V {(EV [u0/u] = @n) ∧ (u = v) ∧ an:v[y]}

{(EV = @n) ∧ an:v[y]} [EV]T += FT {(EV = @n) ∧ an:v[y |FT]}

{(EV = @n) ∧ an:v[y]} [EV]V = FV {(EV = @n) ∧ an:FV
[y]}

{(EV = @m) ∧ (u = u0) ∧ bm:v[y]} u = new a at EV {(EV [u0/u] = @m) ∧ ∃n.((u = @n) ∧ bm:v[y | an:nil[0]])}

{(EV =@n) ∧ an:v[true]} dispose EV {(EV =@n) ∧ 0}

The variables x, x0, y and u, u0, v are assumed to be distinct.

Figure 6: Small Axioms

Frame Rule:
{P} C {Q}

{K(P)} C {K(Q)}
Mod(C) ∩ FV(K) = {}

Auxiliary Variable Elimination:
{P} C {Q}

{∃ • .P} C {∃ • .Q}
• = x|u|a|n /∈ FV(C)

Consequence:
P ′ ⇒ P {P} C {Q} Q⇒ Q′

{P ′} C {Q′}

Sequencing:
{P} C1 {Q} {Q} C2 {R}

{P} C1; C2 {R}

Figure 7: Inference Rules

5. PROGRAM LOGIC FOR TREE UPDATE
We present a Hoare logic for reasoning about our tree

update language, based on the fault-avoiding interpretation
and small axioms of O’Hearn, Reynolds and Yang [7]. We
express and derive the weakest preconditions for our com-
mands.

Definition 13 (Hoare triples). A triple {P}C {Q}
holds iff whenever C is run in a state s, T satisfying P : (i)
it does not generate a fault (we say C, s, T is safe), and (ii)
if it terminates then the resulting state satisfies Q.

Small Axioms
We give a set of “small axioms”, one for each of the com-
mands that alter state. The axioms are small, in that they
mention only those areas of data that are accessed by the
corresponding command. They are presented in Figure 6
and are self-explanatory.

Theorem 14. The Small Axioms are sound.

Proof. The result follows directly from the operational
semantics of the commands.

Inference Rules
There are four inference rules, given in Figure 7. The key
rule is the Frame Rule, which is a direct generalisation of the
Frame Rule in [12]. It captures the idea of local behaviour,
by stating that if a working tree is sufficient for the faultless
execution of a command, then any additional tree structure
will remain unaltered by that command. We use context
assertions to separate out this extra structure.

The set Mod(C) in the side-condition contains those store
variables modified by a command C: i.e. {x} for tree assign-
ments and lookups, {u} for value assignments, lookups and

new, {} for update and disposal, and the usual union for
sequences. We define FV(P), FV(K) and FV(C) to be the
set of free variables in P , K and C, with variables bound
only by existential quantifiers.

The Auxiliary Variable Elimination, Consequence and Se-
quencing rules are standard.

The soundness of the inference rules is routine, except
for the Frame Rule which depends on the commands being
local.

Definition 15 (Locality). A command C is local if
it satisfies these properties:

Safety Monotonicity: if C, s, T is safe (i.e. executes without
fault) and C(T) is well-formed then C, s, C(T) safe.

Frame Property: if C, s, T is safe, C(T) is well-formed, and
C, s, C(T) ;

∗ s′, T ′ then ∃T ′′ such that C, s, T ;
∗

s′, T ′′ and T ′ ≡ C(T ′′).

These conditions characterise which commands act, and
can therefore be reasoned about, locally. They are general-
isations of the conditions given in [12]. For example, a tree
update command resulting in a non-wellformed tree must
diverge (as mentioned in Section 3). This divergence is nec-
essary since the well-formedness check is a global one. Using
fault instead of divergence would break safety monotonicity
and make local reasoning impossible. This situation is anal-
ogous to reasoning about a heap command trying to allocate
a fixed location, say 7. This command would diverge when
7 is already allocated.

Theorem 16. The Inference Rules given in Figure 7 are
sound.

Proof. The only interesting case is the Frame Rule. All
the commands are local (i.e. satisfy Safety Monotonicity
and the Frame Property). Soundness then follows from a
direct argument as in [12].

Weakest Preconditions
The weakest precondition with respect to a predicate P and
a command C is a predicate characterizing all pre-states
from which every terminating execution of C leads to a state
satisfying P .

Being able to express the weakest preconditions in the
logic and derive them from the small axioms is an impor-
tant sanity check and immediately provides a completeness
result for straightline code: all true triples are derivable.
Furthermore, a standard design of a verification tool is to
use a verification generator on code annotated with pre- and
postconditions to derive the weakest precondition of a given
postcondition, and then verify, using a theorem prover (or
automatic decision procedure when possible), that the cor-
responding given precondition implies the weakest one.

Figure 8 contains the weakest preconditions expressed as
Hoare triples. These triples are analogous to those given
in [12] for heap update, as we show in Section 6. As an ex-
ample, consider the weakest precondition for the tree update
command [EV]T += FT :

∃y, v, a, n. (EV = @n) ∧ (an:v[y |FT] � P)(an:v[y])

This property is satisfied if EV evaluates to a pointer @n,
and the tree can be split into a context C and a subtree
an:v[y] for some fresh tree variable y, such that when an:v[y |FT]
is inserted into the context and the result is well-formed,
then the result satisfies P . In another words, the result of
appending FT under the node at n satisfies P , as we would
expect.

Lemma 17. The axioms in Figure 8 express the weakest
preconditions.

Proof. The result follows directly from the operational
semantics of the commands.

Theorem 18 (Derivation of WP’s). The weakest pre-
conditions are derivable.

Proof. See Appendix A.

Program Logic Example
Using the example program from Section 3, we can demon-
strate Hoare reasoning using Context Logic. By calculating
the weakest precondition of program with respect to the
postcondition {true}, we can derive the necessary condition
for non-faulting execution. We show this for delink(@n),

simplifying the expressions as we go:

∃a, b, m, v2.
(0 � True(an:@m[true]))(bm:v2

[true])

ff

u = [v]V ;

∃a, b, m, v1, v2. (u = @m)∧
(0 � True(an:v1

[true]))(bm:v2
[true])

ff

x = [u]T

∃a, b, m, v1, v2. (u = @m)∧
(0 � True(an:v1

[true]))(bm:v2
[true])

ff

dispose u
{∃a, v1. True(an:v1

[true]}
[@n]T += x;

{∃a, v1. True(an:v1
[true]}

[@n]V = nil
{true}

Hence the precondition of a non-faulting execution must sat-
isfy (0 �True(an:@m[true]))(bm:v2

[true]) for some a,b,m and
v2. This assertion expresses exactly what we would expect:
the pointer at an must point somewhere, but not to a direct
ancestor. Furthermore, we can now easily derive a general
specification for the command, using tree variables as place-
holders:

{(0 � True(an:@m[x]))(bm:v[y])}
delink(@n)

{True(an:nil[x ∗ bm:v[y]])}

Relation to Ambient Logic
A natural question is whether the weakest preconditions are
expressible using (a variation of) the Ambient Logic to trees
with pointers. The Ambient Logic can express updates at
the top level of trees by using the parallel composition and
branch adjoints to build contexts around the tree. What it
cannot do directly is reason about update in an arbitrary
context. Using a size argument, we can prove that the Am-
bient Logic cannot express the weakest preconditions with-
out some form of recursion. By introducing the somewhere
modality 3, we obtain a limited form of context reasoning.
However, we believe that this by itself is still not enough to
express the weakest preconditions.

This is best illustrated with an example. Expressing the
weakest precondition of dispose @n with even a simple post-
condition requires case by case analysis using the Ambient
Logic with 3. For example, the postcondition bm1:v1

[bm2:v2
[0]]

has weakest precondition

{∃a, v. (bm1:v1
[bm2:v2

[P] |P] |P) ∧ 3an:v[true]}

where P is (an:v[true]∨ 0). Meanwhile, the precondition for
the weakened postcondition 3bm2:v2

[true] is

{∃a, v. 3an:v[¬3bm2 :v2
[true]] ∧3bm2:v2

[true]}

These preconditions are clearly not parametric in the post-
condition. Moreover, we know that the first of these pre-
conditions must imply the second, since weakest precon-
ditions are monotonic with respect to the postcondition,
and bm1:v1

[bm2:v2
[0]] implies 3bm2:v2

[true]. It is clearly not
straightforward to prove this implication. In contrast, the
implication for the weakest preconditions in Context Logic
is trivial (where 3 is just the context True):

{∃a, v. (0 � bm1:v1
[bm2:v2

[0]])(an:v [true])}
⇓

{∃a, v. (0 � 3bm2:v2
[true])(an:v[true])}

{P [ET /x]} x = ET {P}

{P [EV/u]} u = EV {P}

{∃y, v, a, n. (EV = @n) ∧ True(an:v[true] ∧ y) ∧ P [y/x]} x = [EV]T {P}

{∃v, a, n. (EV = @n) ∧ True(an:v[true]) ∧ P [v/u]} u = [EV]V {P}

{∃y, v, a, n. (EV = @n) ∧ (an:v[y |FT] � P)(an:v[y])} [EV]T += FT {P}

{∃y, v, a, n. (EV = @n) ∧ (an:FV
[y] � P)(an:v[y])} [EV]V = FV {P}

{∃y, v, b, m.(EV = @m) ∧ (∀n. (bm:v[y | an:nil[0]] � P [@n/u]))(bm:v [y])} u = new a at EV {P}

{∃v, a, n. (EV = @n) ∧ ((0 � P)(an:v[true]))} dispose EV {P}

The variables y, v, a, b, m, n (except a for new) are assumed not to occur free in the command or the postcondition.

Figure 8: Weakest Preconditions

6. RELATION TO SEPARATION LOGIC
We adapt our logic to reasoning about heap structures:

that is finite partial functions from locations to values. We
represent heaps as a collection of unary cells m 7→ n, where
m is the location of the cell and n the value it contains. Val-
ues are locations and nil. By analogy with our tree model,
we present heaps and contexts with the grammars

H = 0 | m 7→ n | H ∗H
C = − | C ∗H | H ∗ C

together with a structural congruence on heaps and con-
texts, such that ∗ is a commutative monoid with unit 0, and
a well-formedness condition stipulating unique locations. A
variable store s maps variables u to locations, and expres-
sions E, F take as values either locations or variables.

The key step in adapting our logic is to change the model-
specific data and context assertions to fit the heap structure:

P ::= K(P) | K � P | 0 | E 7→ F |
P ⇒ P | false | ∃u. P

K ::= − | P � P |
K ⇒ K | False | ∃u. K

Here we have two atomic heap assertions: 0 and E 7→ F ,
which holds for the corresponding cell [[E]]s 7→ [[F]]s (cell
[[E]]s containing value [[F]]s). Note that we do not need
special context assertions, since all the contexts are already
expressible using the insertion adjoint P � Q. In particular,
a context of the form P ∗− is expressible as (0�P), as there
is only one way to add a hole to a heap.

The resulting logic is essentially the assertion language of
Separation Logic. The presence of a 0 allows us to define ∗
and −∗ as described in Section 4. These coincide with the
ones of Separation Logic. Furthermore, our Collapse result
for BI (Theorem 12) gives us a translation of Context Logic
assertions into the fragment defined by ∗ and −∗ . Thus, the
Context Logic for heaps has the same expressive power as
Separation Logic.

The connection between reasoning about heaps and trees
goes further. Our storage model and commands for ma-
nipulating trees can be collapsed onto the heap to produce
essentially the commands used in [12]. To do this, we dis-
card tree variables but keep value variables, view pointers
@n as locations n, and restrict ourselves to nodes of the
form an:V [0], which we view as heap pointers n 7→ V (ignor-
ing the tag a). The value assignment, lookup, update and
disposal commands translate into their heap equivalents, as
do the relevant small axioms, weakest preconditions, and

even the derivation proofs [12]. For example, the weakest
preconditions become:

{P [E/u]} u = E {P}
{∃v.(true ∗ (E 7→ v)) ∧ P [v/u]} u = [E]V {P}
{∃v.((E 7→ F)−∗ P) ∗ (E 7→ v)} [E]V = F {P}

{∃v.P ∗ (E 7→ v)} dispose E {P}

The only command that does not translate neatly is new.
This is unsurprising. For heaps, we do not need to specify
where a new cell goes (there is only one place it can go), but
for trees we do. This is because, unlike heaps, trees have no
single location that is expressible locally.

7. APPLICATION TO TERM REWRITING
We now adapt our Context Logic to reason about term

rewriting systems. Terms over a signature do not decompose
as parallel composition of subterms, due to the fixed arity
of function symbols. They do however decompose nicely
as context/subtree pairs, showing that a ∗-like composition
operator and empty term are not the essential primitives
for all kinds of spatial reasoning. The simplicity of this
adaptation to term rewriting demonstrates the generality of
our Context Logic approach.

In this application we treat rewrite rules as atomic com-
mands, and capture their locality by giving small axioms
and showing that the weakest preconditions are derivable.
Intuitively, rewrite rules act locally since, once the redex is
identified, only the corresponding subterm is affected. We
formalize this by considering located terms, where each oc-
currence of a function symbol f is annotated with a location
n ∈ N . Terms and contexts are defined in Figure 9. As be-
fore, we require uniqueness of identifiers for well-formedness.

Our storage model consists of an environment, a variable
store, and a working term. The environment maps term
variables x to terms, and is used only in the logic. The
store maps location variables u to locations. Expressions
E are terms containing term variables and function symbols
annotated with location variables — see Figure 9 for the full
description. We write FVT (E) for the free term variables
and FVL(E) for the free location variables of E. Finally, we
define the command language consisting of atomic rewrite
commands E → F (with E and F subject to restrictions
described later) and sequencing:

C = E → F | C; C

The command E → F finds matchings for the term vari-
ables in E, such that E evaluates to a subterm of the working

terms T ::= fn(T1, T2, . . . Tk) k ≥ 0
contexts C ::= − | fn(T1, . . . , C, . . . Tk) k ≥ 1

term variables VarT = {x, y, . . . }
location variables VarL = {u, v, . . . }

expressions E ::= VarT | fu(E1, E2, . . . Ek)

environment η ∈ (VarT ⇀fin T)
store s ∈ (VarL ⇀fin N)

valuations [[E]]ηs :
[[x]]ηs = η(x)
[[fu(E1 . . . Ek)]]ηs = fs(u)([[E1]]ηs . . . [[Ek]]ηs)

Figure 9: Term Rewrite: Data & Storage Models

Command:

T = C(TE) TE = E[~T/~x][s(~u)/~u] TF = F [~T/~x][~m/~v] C(TF) well-formed

E → F, s, T ; [s|~v ← ~m], C(TF)

where ~x = FVT (E), ~u = FVL(E) and ~v = FVL(F)

Logic:
η, s, T �T E ⇔ T = [[E]]ηs
η, s, C �K fu(P1 . . . , K, . . . Pk)⇔ ∃C′. C = fs(u)(T1 . . . , C′, . . . Tk), η, s, Ti �T Pi, η, s, C′ �K K

Figure 10: Term Rewrite: Command & Logic Semantics

term, and then replaces that subterm with the one generated
by substituting the matches into F , with fresh values as-
signed to F ’s location variables. For example, the execution
of the rewrite rule fu(x, y)→ gv(x, hw(y)) in a store where
u = n will turn hm(fn(cp, cp′)) into hm(gk(cp, hl(cp′))) with
k and l fresh, and will assign k to v and l to w.

We must place the following restrictions on E and F in
the command E → F . For ~x = FVT (E), ~u = FVL(E),
~y = FVT (F), and ~v = FVL(F), we require that:

1. each x ∈ ~x occurs exactly once in E and ~y ⊆ ~x, which
corresponds to the definition of a rewrite rule;

2. each y ∈ ~y occurs exactly once in F , a linearity condi-
tion needed to preserve well-formedness;

3. E is of the form fu(. . .) and not a term variable VarT ,
so that the rewriting acts locally at u; and

4. each v ∈ ~v occurs exactly once in F , allowing fresh
location values to be assigned in parallel.

The operational semantics of E → F is given in Figure 10.
The free variables of E → F are ~u ∪ ~v , whilst the modified
variables are just ~v. Since term variables are only used in-
ternally for pattern matching, they are neither modified nor
free, which explains why the environment is not a parameter
of the operational semantics.

We can now easily adapt our context logic approach to
reasoning about terms and rewrites. As before, the key is to
change the model-specific assertions, in this case given by
term expressions E and term contexts fu(P . . . , K, . . . P).
The tree and context assertions are given by the grammars:

P ::= K(P) | K � P | E |
P ⇒ P | false | ∃u. P

K ::=− | P � P | fu(P, . . . , K, . . . P) |
K ⇒ K | False | ∃u.K

The semantics for the model-specific assertions is given in
Figure 10.

Our Hoare logic for term rewriting consists of small ax-
ioms for each rewriting command, the Frame Rule, and the

other inference rules. The small axiom for E → F is simply

{E[~x′/~x]} E → F {F [~x′/~x]}

The substitution ~x′/~x reflects the fact that the term vari-
ables ~x are bound in the command, and can hence be re-
named in the logic. The weakest precondition axiom is

{(∀~v′. (F [~v′/~v] � P [~v′/~v]))(E)} E → F {P}

where ~x = FVT (E), ~v = FVL(F), ~x ∩ FVL(P) = {} and
~v′ ∩ FVL(F, P) = {}. The derivation from the small ax-
iom is straightforward, using the Frame Rule with context
∀~v′.(F [~v′/~v] � P [~v′/~v]), and the Rule of Consequence.

8. CONCLUSIONS AND FUTURE WORK
Although here we concentrated on a specific presentation

of boolean Context Logic, there is ongoing work on cate-
gorical semantics and completeness for other variants that
include more structure on contexts – context composition –
and where embedding and projection take a more prominent
role. This will appear in a future paper.

We have presented a Hoare logic for reasoning locally
about trees, introducing Context Logic and deriving weak-
est preconditions. It is possible to describe our Hoare triples
using the Ambient Logic. However, it is not possible to de-
rive the weakest preconditions, since although we have given
such conditions for specific cases in Section 5, it seems clear
that we cannot do it parametrically. We have an inexpres-
sivity result for the Ambient Logic without recursion, but
it remains future work to pin down such a result for the
Ambient Logic with a somewhere modality.

Our original motivation for reasoning about tree update
was to reason about update languages for XML. In this pa-
per, we focus on a simple imperative language for manipu-
lating trees, which is expressive enough to illustrate the sub-
tleties of tree update. In future, we will develop a full lan-
guage for XML update, incorporating features such as com-
mands for updating nodes identified by path expressions,
and a local update command that renames node identifiers
to avoid name clashes.

We provide a general theory of boolean Context Logic,
with a Hilbert-style proof theory, forcing semantics and mod-
els. We have shown soundness, and Yang and Calcagno have
recently proved completeness. We also extend our results to
the Context Logic with an additional 0 data element. This
element is present in the heap and tree model (empty heap
or tree), but is not present in term rewriting. With the 0
element, we can derive a ∗-like composition on data with
two corresponding right adjoints. When ∗ is associative and
commutative, then the corresponding two right adjoints co-
incide and we obtain BI. We are only at the beginning of
a general study of Context Logic. We are currently study-
ing the categorical semantics, and the corresponding models
and completeness results (with Yang).

We have shown the generality of our Hoare logic reason-
ing, by adapting our reasoning about tree update to heap
update and term rewriting. The heap update example illus-
trates that not only does our Context Logic collapse to BI,
but also that our Hoare reasoning about trees collapses to
that of heaps. Our term rewriting example illustrates that
our focus on contexts is more fundamental than the multi-
plicative structure of BI (0 and ∗), and suggests that our
Hoare logic reasoning is robust with respect to the style of
update language chosen. These examples demonstrate the
generality of our Context Logic reasoning. In future, we will
extend this work to reason more generally about data up-
date. For example, a natural next step is to extend our work
to more complex data structures involving name binding.

Acknowledgments. We would like to thank Peter O’Hearn,
Pino Rosolini and Hongseok Yang for their insightful com-
ments. This work was supported by EPSRC.

9. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web: from relations to semistructured data and XML.
Morgan Kaufmann, 1999.

[2] N. Biri and D. Galmiche. A separation logic for
resource distribution. In 23rd Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), 2003.

[3] C. Calcagno, P. Gardner, and U. Zarfaty. A context
logic for tree update. In Proceedings of Workshop on
Logics for Resources, Processes and Programs
(LRPP’04), 2004.

[4] L. Cardelli, P. Gardner, and G. Ghelli. Querying trees
with pointers. Unpublished Notes, 2003; talk at
APPSEM 2001.

[5] L. Cardelli and A. D. Gordon. Mobile ambients.
Theoretical Comput. Sci., 240:177–213, 2000.

[6] S. Ishtiaq and P. O’Hearn. BI as an assertion language
for mutable data structures. In 28th POPL, pages
14–26, London, January 2001.

[7] P. O’Hearn, J. Reynolds, and H. Yang. Local
reasoning about programs that alter data structures.
In L. Fribourg, editor, Computer Science Logic
(CSL’01), pages 1–19. Springer-Verlag, 2001. LNCS
2142.

[8] D. Pym. The Semantics and Proof Theory of the Logic
of Bunched Implications. Applied Logic Series. Kluwer
Academic Publishers, 2002.
http://www.dcs.qmul.ac.uk/∼pym/Papersage/bunch.ps.

[9] J. Reynolds. Separation logic: a logic for shared
mutable data structures. Invited Paper, LICS’02,
2002.

[10] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. SIGMOD 2001, Santa Barbara, CA.

[11] H. Yang and C. Calcagno. Completeness results for
Context Logic and BI. In preparation, 2004.

[12] H. Yang and P. O’Hearn. A semantic basis for local
reasoning. Proceedings of FOSSACS, 2002.

APPENDIX

A. DERIVATION PROOF

Proof of Theorem 18

Proof. The derivations are presented on the following
two pages. They consist of sequences of pre- and postcon-
ditions, starting with the small axioms and finishing with
the weakest precondition axioms. At each step, the applied
inference rule is shown between the two conditions.

The proof makes heavy use of the following results, stated
previously in Section 4:

(i)
K((ET = FT) ∧Q) = (ET = FT) ∧K(Q)
K((EV = FV) ∧Q) = (EV = FV) ∧K(Q)

(ii) (P � Q)(P)
always
−−−−→←−−−−−
exact P

Q ∧ True(P)

These are used with the Rule of Consequence and are
marked as Cons(i) or Cons(ii). Applications of the Rule of
Consequence are also accompanied by vertical arrows ⇑/⇓,
to show the direction(s) of inference

Assignments —

{(x = x0) ∧ 0} x = ET {(x = ET [x0/x]) ∧ 0}
{P [ET [x0/x]/x] | ((x = x0) ∧ 0)} Frame Rule {P [ET [x0/x]/x] | ((x = ET [x0/x]) ∧ 0)}
{(x = x0) ∧ P [ET [x0/x]/x]} ⇑ Cons(i) ⇓ {(x = ET [x0/x]) ∧ P [ET [x0/x]/x]}
{(x = x0) ∧ P [ET /x]} ⇑ Cons ⇓ {P}

{P [ET /x]} Aux Vars {P}

{(u = u0) ∧ 0} u = EV {(u = EV [u0/u]) ∧ 0}
{P [EV [u0/u]/u] | ((u = u0) ∧ 0)} Frame Rule {P [EV [u0/u]/u] | ((u = ET [u0/u]) ∧ 0)}
{(u = u0) ∧ P [EV [u0/u]/u]} ⇑ Cons(i) ⇓ {(x = EV [u0/u]) ∧ P [EV [u0/u]/u]}

{∃u0. (u = u0) ∧ P [EV [u0/u]/u]} Aux Vars {∃u0. (u = EV [u0/u]) ∧ P [EV [u0/u]/u]}
{P [EV/u]} ⇑ Cons ⇓ {P}

Lookups —

{(EV = @n) ∧ (x = x0) ∧ (an:v[true] ∧ y)} x = [EV]T {(EV [x0/x] = @n) ∧ (x = y) ∧ (an:v[true] ∧ y)}

((an:v[true] ∧ y) � P [y/x])
((EV = @n) ∧ (x = x0) ∧ (an:v[true] ∧ y))

ff

Frame Rule

((an:v[true] ∧ y) � P [y/x])
((EV [x0/x] = @n) ∧ (x = y) ∧ (an:v[true] ∧ y))

ff

(EV = @n) ∧ (x = x0)∧
((an:v[true] ∧ y) � P [y/x])(an:v[true] ∧ y)

ff

⇑ Cons(i) ⇓

(EV [x0/x] = @n) ∧ (x = y)∧
((an:v[true] ∧ y) � P [y/x])(an:v[true] ∧ y)

ff

(EV = @n) ∧ (x = x0)∧
True(an:v[true] ∧ y) ∧ P [y/x]

ff

⇑ Cons(ii) ⇓

(EV [x0/x] = @n) ∧ (x = y)∧
True(an:v[true] ∧ y) ∧ P [y/x]

ff

(EV = @n) ∧ (x = x0)∧
True(an:v[true] ∧ y) ∧ P [y/x]

ff

Cons ⇓ {P}

∃y, v, a, n. (EV = @n)∧
True(an:v[true] ∧ y) ∧ P [y/x]

ff

Aux Vars {P}

{(EV = @n) ∧ (u = u0) ∧ an:v[y]} u = [EV]V {(EV [u0/u] = @n) ∧ (u = v) ∧ an:v[y]}

(an:v[y] � P [v/u])
((EV = @n) ∧ (u = u0) ∧ an:v[y])

ff

Frame Rule

(an:v[y] � P [v/u])
((EV [u0/u] = @n) ∧ (u = v) ∧ an:v[y])

ff

(EV = @n) ∧ (u = u0)∧
(an:v[y] � P [v/u])(an:v [y])

ff

⇑ Cons(i) ⇓

(EV [u0/u] = @n) ∧ (u = u0)∧
(an:v[y] � P [v/u])(an:v [y])

ff

(EV = @n) ∧ (u = u0)∧
True(an:v[y]) ∧ P [v/u]

ff

⇑ Cons(ii) ⇓

(EV [u0/u] = @n) ∧ (u = v)∧
True(an:v[y]) ∧ P [v/u]

ff

∃y, v, a, n, u0. (EV = @n)∧
(u = u0) ∧ True(an:v[y]) ∧ P [v/u]

ff

Aux Vars

∃y, v, a, n, u0. (EV [u0/u] = @n)∧
(u = v) ∧ True(an:v[y]) ∧ P [v/u]

ff

∃v, a, n. (EV = @n)∧
True(an:v[true]) ∧ P [v/u]

ff

⇑ Cons ⇓ {P}

Updates —

{(EV = @n) ∧ an:v[y]} [EV]T += FT {(EV = @n) ∧ an:v[y |FT]}

(an:v[y |FT] � P)
((EV = @n) ∧ an:v[y])

ff

Frame Rule

(an:v[y |FT] � P)
((EV = @n) ∧ an:v[y |FT])

ff

(EV = @n)∧
(an:v[y |FT] � P)(an:v[y])

ff

⇑ Cons(i) ⇓

(EV = @n)∧
(an:v[y |FT] � P)(an:v[y |FT])

ff

(EV = @n)∧
(an:v[y |FT] � P)(an:v[y])

ff

Cons(ii) ⇓

(EV = @n)∧
True(an:v[y |FT]) ∧ P

ff

∃y, v, a, n. (EV = @n)∧
(an:v[y |FT] � P)(an:v[y])

ff

Aux Vars

∃y, v, a, n. (EV = @n)∧
True(an:v[y |FT]) ∧ P

ff

∃y, v, a, n. (EV = @n)∧
(an:v[y |FT] � P)(an:v[y])

ff

Cons ⇓ {P}

{(EV = @n) ∧ an:v[y]} [EV]V = FV {(EV = @n) ∧ an:FV
[y]}

(an:FV
[y] � P)

((EV = @n) ∧ an:v[y])

ff

Frame Rule

(an:FV
[y] � P)

((EV = @n) ∧ an:FV
[y])

ff

(EV = @n)∧
(an:FV

[y] � P)(an:v[y])

ff

⇑ Cons(i) ⇓

(EV = @n)∧
(an:FV

[y] � P)(an:FV
[y])

ff

(EV = @n)∧
(an:FV

[y] � P)(an:v[y])

ff

Cons(ii) ⇓

(EV = @n)∧
True(an:FV

[y]) ∧ P

ff

∃y, v, a, n. (EV = @n)∧
(an:FV

[y] � P)(an:v[y])

ff

Aux Vars

∃y, v, a, n. (EV = @n)∧
True(an:FV

[y]) ∧ P

ff

∃y, v, a, n. (EV = @n)∧
(an:FV

[y] � P)(an:v[y])

ff

Cons ⇓ {P}

New & Dispose —

(EV = @m) ∧ (u = u0)∧
bm:v[y]

ff

u = new a at EV

(EV [u0/u] = @m) ∧ ∃n.((u = @n)∧
bm:v[y | an:nil[0]])

ff

8

<

:

(∀n.(bm:v[y | an:nil[0]] � P [@n/u]))
((EV = @m) ∧ (u = u0)∧

bm:v[y])

9

=

;

Frame Rule

8

<

:

(∀n.(bm:v[y | an:nil[0]] � P [@n/u]))
((EV [u0/u] = @m) ∧ ∃n.((u = @n)∧

bm:v[y | an:nil[0]]))

9

=

;

8

<

:

(EV = @m) ∧ (u = u0)∧
(∀n.(bm:v[y | an:nil[0]] � P [@n/u]))

(bm:v[y])

9

=

;

⇑ Cons ⇓

8

<

:

(EV [u0/u] = @m) ∧ ∃n.((u = @n)∧
(∀n.(bm:v[y | an:nil[0]] � P [@n/u]))

(bm:v[y | an:nil[0]]))

9

=

;

8

<

:

(EV = @m) ∧ (u = u0)∧
(∀n.(bm:v[y | an:nil[0]] � P [@n/u]))

(bm:v[y])

9

=

;

Cons(ii) ⇓

(EV [u0/u] = @m) ∧ ∃n.((u = @n)∧
True(bm:v[y | an:nil[0]]) ∧ P [@n/u]))

ff

8

<

:

(EV = @m) ∧ (u = u0)∧
(∀n.(bm:v[y | an:nil[0]] � P [@n/u]))

(bm:v[y])

9

=

;

Cons ⇓ {P}

8

<

:

∃y, v, b, m, u0. (EV = @m) ∧ (u = u0)∧
(∀n.(bm:v[y | an:nil[0]] � P [@n/u]))

(bm:v[y])

9

=

;

Aux Vars {P}

8

<

:

∃y, v, b, m. (EV = @m)∧
(∀n.(bm:v[y | an:nil[0]] � P [@n/u]))

(bm:v[y])

9

=

;

⇑ Cons {P}

{(EV = @n) ∧ an:v[true]} dispose EV {(EV = @n) ∧ 0}
{(0 � P)((EV = @n) ∧ an:v[true])} Frame Rule {(0 � P)((EV = @n) ∧ 0)}
{(EV = @n) ∧ (0 � P)(an:v[true])} ⇑ Cons(i) ⇓ {(EV = @n) ∧ (0 � P)(0)}

{∃v, a, n. (EV = @n) ∧ (0 � P)(an:v[true])} Aux Vars {∃v, a, n. (EV = @n) ∧ (0 � P)(0)}
{∃v, a, n. (EV = @n) ∧ (0 � P)(an:v[true])} Cons(ii) ⇓ {P}

